Quantitative analysis method for ship construction quality
-
摘要:
目的 对舰船建造质量进行准确评价是装备实现既定任务目标的保障。由于舰船建造样本量小、加工类型多样、工艺路线非标准化,长期以来,对于舰船建造质量的研究缺乏数据信息的支撑,通常以定性分析为主。为实现对舰船建造质量的量化评价和有效控制, 方法 针对建造工艺故障的随机性和不确定性,在以功能为导向的质量控制(FOQC)方法提出的工艺-质量参数模型基础上,基于模糊数学理论集成专家评分方法,将顺序关联、串联、混联工艺可靠度计算模型与模糊评分方法结合,提出舰船建造质量定量评价流程和工艺可靠度模糊计算方法。 结果 以某型号舰船轴系齿轮箱安装建造为实例进行计算,验证了方法的可用性和有效性。 结论 计算结果可为关键质量检验点设置及关键工艺控制优化提供参考。 Abstract: The excellent performance of a ship is assured by the accurate evaluation of its construction quality. For a long time, research into the construction quality of ships has mainly focused on qualitative analysis due to a shortage of process data, which results from limited samples, varied process types and non-standardized processes. Aiming at predicting and controlling the influence of the construction process on the construction quality of ships, this article proposes a reliability quantitative analysis flow path for the ship construction process and fuzzy calculation method. Based on the process-quality factor model proposed by the Function-Oriented Quality Control (FOQC) method, we combine fuzzy mathematics with the expert grading method to deduce formulations calculating the fuzzy process reliability of the ordinal connection model, series connection model and mixed connection model. The quantitative analysis method is applied in analyzing the process reliability of a ship's shaft gear box installation, which proves the applicability and effectiveness of the method. The analysis results can be a useful reference for setting key quality inspection points and optimizing key processes. -
表 1 概率评估的语义表达
Table 1. Semantic expressions for probability
语义词 评估对象 故障模式概率 修正概率 L1 几乎不能 几乎不能 L2 较小可能 较小可能 L3 中等可能 中等可能 L4 较大可能 较大可能 L5 很大可能 很大可能 L6 非常可能 非常可能 表 2 梯形模糊数的语义表达
Table 2. Semantic expressions for TFN
语义词 梯形模糊数TFN a b c d L1 0.000 0.000 0.050 0.093 L2 0.072 0.129 0.217 0.311 L3 0.255 0.326 0.382 0.458 L4 0.428 0.503 0.584 0.620 L5 0.542 0.613 0.739 0.847 L6 0.725 0.854 1.000 1.000 -
[1] BOSACCHI B. Fuzzy logic application to quality and reliability in microelectronics[C]//Proceedings of the SPIE2761, Applications of Fuzzy Logic Technology Ⅲ. Orlando, FL:SPIE, 1996. [2] 周思醒, 杨建军, 胡涛.舰船总体任务可靠性建模新方法[J].中国舰船研究, 2010, 5(1):52-55. http://www.ship-research.com/CN/abstract/abstract526.shtmlZHOU S X, YANG J J, HU T. A new method to estab-lish reliability model for overall mission of ships[J]. Chinese Journal of Ship Research, 2010, 5(1):52-55(in Chinese). http://www.ship-research.com/CN/abstract/abstract526.shtml [3] 廖卫献, 门德春.核燃料包装容器桶体缝焊工艺可靠性建模[J].核动力工程, 1997, 18(6):563-564, 576. http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG706.016.htmLIAO W X, MEN D C. Modelling of reliability of seam welding process of nuclear fuel containers[J]. Nuclear Power Engineering, 1997, 18(6):563-564, 576(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HDLG706.016.htm [4] BRALL A. Availability modeling for the application of manufacturing equipment[C]//Proceedings of the An-nual Reliability and Maintainability Symposium.[S.l.]:IEEE, 2002. [5] JIANG Z B, ZUOM J, FUNG R Y K. Stochastic ob-ject-oriented Petri nets (SOPNs) for reliability model-ing of manufacturing systems[C]//Proceedings of theI-EEE Canadian Conference on Electrical and Computer Engineering.[S.l.]:IEEE, 1999. [6] ZHOU M C. Modeling, analysis, simulation, schedul-ing, and control of semiconductor manufacturing sys-tems:a Petri net approach[J]. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(3):333-357. doi: 10.1109/66.705370 [7] LIANG L, GUO B. The study of mission reliability of QRMS based on the multistage Markov Process[C]//Proceedings of 7th International Conference on Compu-tational Science:Part Ⅳ. Beijing, China:[s.n.], 2007. [8] MOCKO G M, PAASCH R. Incorporating uncertainty in diagnostic analysis of mechanical systems[J]. Jour-nal of Mechanical Design, 2005, 127(2):315-325. doi: 10.1115/1.1829071 [9] 蒋平. 机械制造的工艺可靠性研究[D]. 长沙: 国防科学技术大学, 2010. [10] 王晓亮, 王大钧. 舰船建造过程可靠性工作系统的建立与实施[C]//第三届中国质量学术论坛论文集. 厦门: 中国质量协会, 2008. [11] 张志英, 戴银芳, 陈杰.船底分段装配偏差流建模[J].哈尔滨工程大学学报, 2012, 33(1):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201201002.htmZHANG Z Y, DAI Y F, CHEN J. Modeling steam of variation for the bottom block assembly[J]. Journal of Harbin Engineering University, 2012, 33(1):1-8(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201201002.htm [12] 周宏, 蒋志勇.舰船制造可靠性评价指标体系及方法研究[J].舰船科学技术, 2005, 27(5):87-90. http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX200505020.htmZHOU H, JIANG Z Y. Study of the assess system and way of warship manufacture reliability[J]. Ship Sci-ence and Technology, 2005, 27(5):87-90(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX200505020.htm [13] 黄一民.舰船建造工艺失效模式及影响分析方法简介[J].船舶, 2005(6):35-38. http://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200506008.htmHUANG Y M. Methods of failure mode and affect analysis for shipbuilding techniques[J]. Ship & Boat, 2005(6):35-38(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ200506008.htm [14] 杜振华, 杨芙云.电气装配可靠性工艺研究[J].舰船科学技术, 2006, 28(增刊1):69-72. http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX2006S1022.htmDU Z H, YANG F Y. Electric assembly reliability technique research[J]. Ship Science and Technolo-gy, 2006, 28(Supp 1):69-72(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JCKX2006S1022.htm [15] 王鸿东, 梁晓锋, 余平, 等.以功能为导向的舰船建造质量控制方法[J].中国舰船研究, 2016, 11(5):134-142. http://www.ship-research.com/CN/abstract/abstract1611.shtmlWANG H D, LIANG X F, YU P, et al. A func-tion-oriented quality control method for ship construc-tion[J]. Chinese Journal of Ship Research, 2016, 11(5):134-142(in Chinese). http://www.ship-research.com/CN/abstract/abstract1611.shtml [16] JOHNSON K G, KHAN M K. A study into the use of the process failure mode and effects analysis (PFMEA) in the automotive industry in the UK[J]. Journal of Materials Processing Technology, 2003, 139(1/2/3):348-356. https://www.researchgate.net/publication/222146802_A_study_into_the_use_of_the_process_failure_mode_and_effects_analysis_PFMEA_in_the_automotive_industry_in_the_UK [17] 许卫宝.飞行员着舰的多层次模糊综合评价方法[J].中国舰船研究, 2013, 8(2):17-21. http://www.ship-research.com/CN/abstract/abstract859.shtmlXU W B. A comprehensive evaluation method for car-rier landing based on fuzzy analytical hierarchy pro-cess[J]. Chinese Journal of Ship Research, 2013, 8(2):17-21(in Chinese). http://www.ship-research.com/CN/abstract/abstract859.shtml [18] HIPEL K W, RADFORD K J, FANG L. Multiple par-ticipant-multiple criteria decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23(4):1184-1189. doi: 10.1109/21.247900 [19] BOWLES J B, PELÁEZ C E. Fuzzy logic prioritiza-tion of failures in a system failure mode, effects and criticality analysis[J]. Reliability Engineering & Sys-tem Safety, 1995, 50(2):203-213. https://www.infona.pl/resource/bwmeta1.element.elsevier-135f937d-7d45-367b-9a53-a8c3fe73114e [20] LIU P D. A weighted aggregation operators multi-at-tribute group decision-making method based on inter-val-valued trapezoidal fuzzy numbers[J]. Expert Sys-tems with Applications, 2011, 38(1):1053-1060. doi: 10.1016/j.eswa.2010.07.144 [21] 白春杰, 吴晓平, 黄登斌.基于专家权重的综合评价研究[J].海军工程大学学报, 2004, 16(3):105-109. http://www.cnki.com.cn/Article/CJFDTOTAL-HJGX200403024.htmBAI C J, WU X P, HUANG D B. Improved AHP al-gorithm based on expert weights[J]. Journal of Naval University of Engineering, 2004, 16(3):105-109(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HJGX200403024.htm [22] CHEN S J, CHEN S M. Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(1):45-56. doi: 10.1109/TFUZZ.2002.806316 [23] 文成林, 周哲, 徐晓滨.一种新的广义梯形模糊数相似性度量方法及在故障诊断中的应用[J].电子学报, 2011, 39(3A):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU2011S1001.htmWEN C L, ZHOU Z, XU X B. A new similarity mea-sure between generalized trapezoidal fuzzy numbers and its application to fault diagnosis[J]. Acta Elec-tronica Sinica, 2011, 39(3A):1-6(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU2011S1001.htm -