留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶碰撞机理三维解析法实现及恢复系数研究

刘俊峰 胡志强

刘俊峰, 胡志强. 船舶碰撞机理三维解析法实现及恢复系数研究[J]. 中国舰船研究, 2017, 12(2): 84-91. doi: 10.3969/j.issn.1673-3185.2017.02.011
引用本文: 刘俊峰, 胡志强. 船舶碰撞机理三维解析法实现及恢复系数研究[J]. 中国舰船研究, 2017, 12(2): 84-91. doi: 10.3969/j.issn.1673-3185.2017.02.011
LIU Junfeng, HU Zhiqiang. 3D analytical method for the external dynamics of ship collisions and investigation of the coefficient of restitution[J]. Chinese Journal of Ship Research, 2017, 12(2): 84-91. doi: 10.3969/j.issn.1673-3185.2017.02.011
Citation: LIU Junfeng, HU Zhiqiang. 3D analytical method for the external dynamics of ship collisions and investigation of the coefficient of restitution[J]. Chinese Journal of Ship Research, 2017, 12(2): 84-91. doi: 10.3969/j.issn.1673-3185.2017.02.011

船舶碰撞机理三维解析法实现及恢复系数研究

doi: 10.3969/j.issn.1673-3185.2017.02.011
基金项目: 

国家自然科学基金重点项目资助 51239007

详细信息
    作者简介:

    刘俊峰, 男, 1993年生, 硕士生

    通信作者:

    胡志强 (通信作者), 男, 1975年生, 博士, 副教授

  • 中图分类号: U661.43

3D analytical method for the external dynamics of ship collisions and investigation of the coefficient of restitution

知识共享许可协议
船舶碰撞机理三维解析法实现及恢复系数研究刘俊峰,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  采用解析方法分析船舶碰撞动力特性较为快速和准确,其中外部动力学分析十分重要。  方法  为此,运用MATLAB程序实现船舶碰撞外部机理三维简化解析方法,计算两艘船舶碰撞的动能损失,并与二维解析方法的计算结果进行比对。在实现船舶碰撞动能损失快速计算解析方法的基础上,讨论碰撞高度、角度和位置对动能损失的影响。此外,还研究碰撞场景对保守恢复系数的影响和保守恢复系数对动能损失的影响。  结果  结果表明:三维解析方法得到的动能损失小于二维解析方法,碰撞高度对于动能损失有明显的影响;简化解析方法中,对于碰撞角度大于90°的场景,恢复系数简单地取0并不安全。  结论  在今后的外部动力学分析中,为了使动能损失的计算值更加准确,可以使用三维解析方法代替二维解析方法。
  • 图  1  碰撞总体坐标系和局部坐标系[5]

    Figure  1.  Global and local coordinate systems[5]

    图  2  碰撞点位置

    Figure  2.  Collision locations along ship length

    图  3  不同碰撞角度和垂向碰撞位置时,碰撞能量损耗率随碰撞点沿船长方向位置变化曲线

    (f)图(a)~(e)的整体图

    Figure  3.  Relationships between energy dissipation and collision location with different impact angles and vertical impact heights

    图  4  不同碰撞角度下,动能损失—恢复系数曲线(船舯碰撞,v_stru=v_stri=4.5 m/s)

    Figure  4.  Relationship between energy dissipation and restitution coefficient with different collision angles (mid-ship collision, v_stru=v_stri=4.5 m/s)

    图  5  不同碰撞位置下,动能损失—恢复系数曲线(θ=120°,v_stru=v_stri=4.5 m/s)

    Figure  5.  Relationship between energy dissipation and restitution coefficient with different collision locations (θ=120°, v_stru=v_stri=4.5 m/s)

    图  6  被撞船速度不同时,动能损失—恢复系数曲线(船舯碰撞,θ=60°,v_stri=4.5 m/s)

    Figure  6.  Relationship between energy dissipation and restitution coefficient with different velocities of the struck ship (mid-ship collision, θ=60°, v_stri=4.5 m/s)

    图  7  撞击船速度不同时,动能损失—恢复系数曲线(船舯碰撞,θ=60°,v_stru=4.5 m/s)

    Figure  7.  Relationship between energy dissipation and restitution coefficient with different velocities of the striking ship (midship collision, θ=60°, v_stru=4.5 m/s)

    图  8  60°碰撞角时,内能和摩擦能随恢复系数变化

    Figure  8.  Relationship between energy and restitution coefficient (θ=60°)

    图  9  120°碰撞角,内能和摩擦能随恢复系数变化

    Figure  9.  Relation between energy and restitution coefficient (θ=120°)

    图  10  计算流程图

    Figure  10.  Flow chart of analysis

    图  11  被撞船和撞击船航速均为4.5 m/s时,碰撞能量损耗率曲线

    Figure  11.  Relation between energy dissipation and location when the velocities of both ships are 4.5 m/s

    图  12  被撞船航速为4.5 m/s,撞击船航速为6 m/s时,碰撞能量损耗率曲线

    Figure  12.  Relation between energy dissipation and location when the velocities of the struck ship and the striking ship are 4.5 m/s and 6 m/s separately

    表  1  碰撞点位置和参数[3]

    Table  1.   Collision locations and waterline angles[3]

    碰撞点 Xc/L Xc/m Yc/m α/(°)
    1 (bow) 0.50 40 0 90
    2 0.48 38.5 2.6 45
    3 0.46 36.6 4.1 37.5
    4 0.43 34.6 5.6 32.5
    5 0.39 30.8 7.5 21.7
    6 0.34 27 9 14.4
    7 0.29 23.1 9.4 7.3
    8 0.24 19.3 9.4 0
    9 0.19 15.4 9.4 0
    10 0.15 11.6 9.4 0
    11 0.10 7.7 9.4 0
    12 0.05 3.9 9.4 0
    13(mid) 0.00 0 9.4 0
    14 -0.05 -3.9 9.4 0
    15 -0.10 -7.7 9.4 0
    16 -0.15 -11.6 9.4 0
    17 -0.19 -15.4 9.4 0
    18 -0.24 -19.3 9.4 0
    19 -0.29 -23.1 9.4 0
    20 -0.34 -27 9.4 0
    21 -0.39 -30.8 9.4 0
    22 -0.43 -34.6 9.4 0
    23 -0.48 -38.5 9.4 0
    24 (stern) -0.50 -40 9.4 0
    注:表中L代表被撞船的船长。
    下载: 导出CSV

    表  2  被撞船和撞击船航速均为4.5 m/s时,保守恢复系数的选取

    Table  2.   Selection of the conservative coefficient of restitution when the velocities of both ships are 4.5 m/s

    碰撞位置 碰撞角度θ/(°)
    30 60 90 120 150
    0.50 0.95 0.85 0.65 0 0
    0.48 0 0 0 0 0
    0.46 0 0 0 0 0.1
    0.43 0 0 0 0 0.25
    0.39 0 0 0 0 0.7
    0.34 0 0 0 0.1 1
    0.29 0 0 0 0.3 1
    0.24 0 0 0 0.6 1
    0.19 0 0 0 0.55 1
    0.15 0.1 0 0 0.5 1
    0.10 0.1 0 0 0.45 1
    0.05 0.1 0 0 0.4 1
    0.00 0.1 0.15 0 0.4 1
    -0.05 0.15 0.2 0 0.4 1
    -0.10 0.15 0.2 0 0.4 1
    -0.15 0.15 0.2 0 0.4 1
    -0.19 0.15 0.2 0 0.45 1
    -0.24 0.15 0.2 0 0.45 1
    -0.29 0.15 0 0 0.5 1
    -0.34 0.15 0 0 0.55 1
    -0.39 0.2 0 0 0.6 1
    -0.43 0.2 0 0.05 0.6 1
    -0.48 0.2 0 0.1 0.65 1
    -0.50 0.2 0 0.1 0.65 1
    下载: 导出CSV

    表  3  被撞船航速为4.5 m/s,撞击船航速为6 m/s时,保守恢复系数的选取

    Table  3.   Selection of the conservative coefficient of restitution when the velocities of the struck ship and striking ship are 4.5 m/s and 6 m/s separately

    碰撞位置 碰撞角度
    30 60 90 120 150
    0.50 0.3 1 0.95 0.25 0
    0.48 1 0.45 0 0 0
    0.46 0.95 0.25 0 0 0.1
    0.43 0.95 0.05 0 0 0.2
    0.39 0.75 0 0 0 0.6
    0.34 0.75 0 0 0 0.9
    0.29 0.75 0 0 0.2 1
    0.24 0.75 0.05 0 0.45 1
    0.19 0.85 0.05 0 0.4 1
    0.15 0.85 0.05 0 0.3 1
    0.10 0.95 0.05 0 0.3 1
    0.05 0.95 0.05 0 0.25 1
    0.00 0.95 0.05 0 0.25 1
    -0.05 0.95 0.05 0 0.2 1
    -0.10 0.95 0.05 0 0.25 1
    -0.15 0.95 0.05 0 0.25 1
    -0.19 0.95 0.05 0 0.3 1
    -0.24 0.2 0.05 0 0.3 1
    -0.29 0.2 0.1 0 0.35 1
    -0.34 0.3 0.1 0 0.35 1
    -0.39 0.3 0.1 0 0.4 1
    -0.43 0.3 0.1 0 0.45 1
    -0.48 0.3 0.1 0 0.45 1
    -0.50 0.3 0.1 0 0.45 1
    下载: 导出CSV
  • [1] 王自力, 顾永宁.船舶碰撞运动的滞后特性[J].中国造船, 2001, 42(2):56-62. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC200102008.htm

    WANG Z L, GU Y N. Motion lag of struck ship in colli-sion[J]. Shipbuilding of China, 2001, 42(2):56-64(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC200102008.htm
    [2] MINORSKY V U. An analysis of ship collisions with reference to protection of nuclear power plants[R]. New York:Sharp (George G.) Inc., 1958.
    [3] PEDERSEN P T, ZHANG S M. On impact mechanics in ship collisions[J]. Marine Structures, 1998, 11(10):429-449. doi: 10.1016/S0951-8339(99)00002-7
    [4] STRONGE W J. Impact mechanics[M]. Cambridge:Cambridge University Press, 2004.
    [5] LIU Z H, AMDAHL J. A new formulation of the im-pact mechanics of ship collisions and its application to a ship-iceberg collision[J]. Marine Structures, 2010, 23(3):360-384. doi: 10.1016/j.marstruc.2010.05.003
    [6] PETERSEN M J. Dynamics of ship collisions[J].Ocean Engineering, 1982, 9(4):295-329. doi: 10.1016/0029-8018(82)90026-9
    [7] TABRI K, BROEKHUIJSEN J, MATUSIAK J, et al. Analytical modelling of ship collision based on full-scale experiments[J]. Marine Structures, 2009, 22(1):42-61. doi: 10.1016/j.marstruc.2008.06.002
    [8] TABRI K, MÄÄTTÄNEN J, RANTA J. Model-scale experiments of symmetric ship collisions[J]. Journal of Marine Science and Technology, 2008, 13(1):71-84. doi: 10.1007/s00773-007-0251-z
    [9] TABRI K, VARSTA P, MATUSIAK J. Numerical and experimental motion simulations of nonsymmetric ship collisions[J]. Journal of Marine Science and Technolo-gy, 2010, 15(1):87-101. doi: 10.1007/s00773-009-0073-2
    [10] YU Z L, AMDAHL J R, STORHEIM M. A new ap-proach for coupling external dynamics and internal mechanics in ship collisions[J]. Marine Structures, 2016, 45:110-132. doi: 10.1016/j.marstruc.2015.11.001
    [11] LÜTZEN M, PEDERSEN P T. Ship collision damage[D]. Denmark:Technical University of Denmark, 2002.
    [12] KITAMURA O. FEM approach to the simulation of collision and grounding damage[J]. Marine Struc-tures, 2002, 15(4/5):403-428.
    [13] HARIS S, AMDAHL J. Analysis of ship-ship colli-sion damage accounting for bow and side deformation interaction[J]. Marine Structures, 2013, 32:18-48. doi: 10.1016/j.marstruc.2013.02.002
    [14] SUN B, HU Z Q, WANG G. An analytical method for predicting the ship side structure response in raked bow collisions[J]. Marine Structures, 2015, 41:288-311. doi: 10.1016/j.marstruc.2015.02.007
    [15] ZHANG S M. The mechanics of ship collisions[D]. Denmark:Technical University of Denmark, 1999.
    [16] POPOV Y N, FADDEEV O V, KHEISIN D E, et al. Strength of ships sailing in ice[R]. DTIC Document, Washington, DC:Army Foreign Science & Technolo-gy Center, 1969.
  • 2017-2-84_en.pdf
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  54
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-28
  • 网络出版日期:  2017-03-13
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回