Numerical simulation on bearing force of propeller for machining errors in non-uniform inflow
-
摘要:
目的 为研究复合材料螺旋桨的加工误差在非均匀来流中引起的轴承力问题, 方法 基于统计法,人为改变螺旋桨主桨叶沿坐标轴平移和旋转等6个自由度方向的加工误差量。在非均匀来流条件下采用SST k-ω模型和滑移网格技术对具有参数误差量的DTMB P4119螺旋桨进行螺旋桨轴承力计算,通过分析,得到螺旋桨各参数加工误差量对螺旋桨轴承力影响的基本规律。 结果 研究表明:随着各自由度方向加工误差量的增加,垂向和横向轴频轴承力呈近似线性增加的趋势,一阶叶频轴承力变化较小;桨叶在直径、螺距方向的加工误差对螺旋桨轴频轴承力影响较大。 结论 所得结果可以帮助准确预报螺旋桨性能,并为提出更为详细的螺旋桨加工精度准则奠定基础,为该领域后续的研究提供借鉴与参考。 Abstract: In order to study the bearing force caused by the machining errors of composite material propeller in non-uniform flow, the propeller was computed by changing the machining error of the propeller in six degrees of freedom, in which the main blade translates and rotates along the coordinate axis artificially by way of the statistical method. The bearing force of a DTMB P4119 propeller with a machining error was calculated according to the SST k-ω model and sliding meshing non-uniform flow to figure out the impact of various machining errors on the propeller, enabling a fundamental rule about the impact of various machining errors on a propeller's bearing force to be formed. The results show that vertical bearing force and horizontal bearing force increase linearly, and first-order blade frequency bearing force rarely changes with the increase of machining errors in each freedom; machining errors along the directions of diameter and pitch have a great impact on the propeller shaft's frequency bearing force. Therefore, we can put forward a more refined principle about the machining accuracy of propellers.-
Key words:
- propeller /
- machining error /
- non-uniform inflow /
- bearing force
-
表 1 无加工误差螺旋桨的一阶叶频轴承力
Table 1. The bearing force of first-order blade frequency without machining error
轴承力 数值 横向力/N 3.154 横向扭矩(/ N·m) 0.448 垂向力/N 1.834 垂向扭矩(/ N·m) 0.280 -
[1] VARTDAL B J, GJESTLAND T, ARVIDSEN T I. Lat-eral propeller forces and their effects on shaft bearings[C]//First International Symposium on Marine Propul-sors. Trondheim, Norway:[s.n.], 2009. [2] 何友声, 王国强.螺旋桨激振力[M].上海:上海交通大学出版社, 1987. [3] WEI Y S, WANG Y S. Unsteady hydrodynamics of blade forces and acoustic response of a model scaled-submarine excited by propeller's thrust and side-forces[J]. Journal of Sound and Vibration, 2013, 332(8):2038-2056. doi: 10.1016/j.jsv.2012.12.001 [4] LIEFVENDAHL M, TROËNG C. Computation of cy-cle-to-cycle variation in blade load for a submarine propeller, using LES[C]//Second International Sympo-sium on Marine Propulsors. Hamburg, Germany:[s. n.], 2011. [5] ORTOLANI F, MAURO S, DUBBIOSO G. Investiga-tion of the radial bearing force developed during actual ship operations, Part 1:straight ahead sailing and turn-ing maneuvers[J]. Ocean Engineering, 2015, 94:67-87. doi: 10.1016/j.oceaneng.2014.11.032 [6] PAN J, FARAG N, LIN T, et al. Propeller induced structural vibration through the thrust bearing[C]//In-novation in Acoustics and Vibration Annual Confer-ence of the Australian Acoustical Society. Adelaide, Australia:AAS, 2002. [7] 丁举. 桨模加工误差影响分析[C]//中国造船工程学会2007年船舶力学学术会议暨《船舶力学》创刊十周年纪念学术会议论文集. 银川: 中国造船工程学会, 2007. [8] 刘登成, 洪方文, 张志荣, 等. 伴流中螺旋桨非定常力黏性数值方法研究[C]//第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议文集. 上海: 上海《水动力学研究与进展》杂志社, 2011.LIU D C, HONG F W, ZHANG Z R, et al. Research on viscous numerical method of propeller unsteady force in wake[C]//Tenth National Hydrodynamics Academic Conference Collected Papers. Shanghai:Journal of Hy-drodynamics Research and Development in Shanghai, 2011(in Chinese). [9] 全国船用机械标准化技术委员会. 船用金属螺旋桨技术条件: GB/T 12916-2010[S]. 北京: 中国标准出版社, 2010.National Technical Committee for Standardization of Marine Machinery. Specification for marine metallic propeller:GB/T 12916-2010[S]. Beijing:China Stan-dard Press, 2010(in Chinese). -