GFRP and steel compounded structure subjected to impact by high velocity projectiles
-
摘要: 为探究钢与玻璃钢的组合结构形式对舰船舱壁复合装甲结构抗穿甲性能的影响,采用均质钢板前置和后置玻璃钢来分别模拟舰船舱壁外设及内设复合装甲结构,结合高速弹道冲击实验,分析、比较2种结构形式组合靶板的穿甲破坏模式和抗弹吸能能力。在此基础上,利用有限元分析软件ANSYS/LS-DYNA开展高速立方体弹丸侵彻组合靶板的数值模拟计算,分析组合靶板的侵彻过程,并与实验结果进行比较。结果表明,数值计算结果与实验结果较为吻合;2种组合靶板中复合装甲板的破坏模式均主要为钢板的剪切冲塞破坏和玻璃钢的纤维剪切断裂,后置组合靶板中玻璃钢背层伴随有纤维的拉伸破坏;前置组合靶板的抗弹吸能能力要稍大于后置组合靶板。Abstract: To explore the influence of steel and GFRP structural configuration on the perforation-resis-tance of a composite armor system of warship bulkhead, a series of high velocity ballistic impact experi-ments are performed.The outer and inner composite armor systems of warship bulkhead are simulated us-ing homogeneous steel plates prefaced and backed with composite laminates, respectively. Failure modes and energy absorption for the two types of combined targets are analyzed and compared with each other. Based on the experimental results, the compounded structure subjected to the impact caused by cube pro-jectiles is simulated using finite element program ANSYS/LS-DYNA, where the process of penetration is investigated and compared with experiment results. It is observed that the numerical results are in good agreement with the experimental results; the failure modes for the composite armors in the two types of com-bined targets are mainly the shear punch failure of steel plates and the fiber shear fracture of GFRP, while the GFRP in the combined target consisted of front steel plates and composite backed armors also has ten-sile failure of fibers; the combined target consisted of front steel plates and composite backed armors ab-sorbs much more energy than that consisted of front composite armors and steel backed plates.
-
表 1 钢材料性能参数
Table 1. Material properties of steel
参数 数值 45#钢 Q235钢 弹性模量E/GPa 205 210 密度ρ/(kg.m-3) 7 800 7 850 泊松比υ 0.3 0.3 应力σy/MPa 335 235 抗拉强度σb/MPa 450 400~490 伸长率δs/% 16 22 表 2 SW220玻璃钢材料性能参数
Table 2. Material properties of SW220 GFRP
参数 数值 密度ρ/(kg.m-3) 2 100 面内拉伸模量/GPa 30.5 面内拉伸强度/MPa 450 厚度方向压缩模量/GPa 3.85 厚度方向压缩强度/MPa 488.3 剪切模量/GPa 1.11 剪切强度/MPa 156 断裂韧性值/J·cm-2) 1.59 伸长率δs/% 1.5 单位断裂应变能/(MJ·m-3) 3.38 表 3 弹体的材料参数
Table 3. Material parameters of projectile
σ0 /MPa Eh /MPa N D/s-1 失效应变εf 335 350 5 40.4 0.7 表 4 钢板的材料参数
Table 4. Material parameters of steel plate
G/GPa A/MPa B/MPa n c m Tm/K T0/K D1 D2 D3 D4 D5 80.8 235 300 0.26 0.014 1.03 1 793 300 0.4 0 0 0 0 表 5 玻璃钢的材料参数
Table 5. Material parameters of GFRP
E11/GPa E22/GPa E33/GPa υ12 υ13 υ23 G12/GPa G13/GPa G23/GPa 18.22 18.22 6 0.12 0.3 0.3 6.75 6.75 3 表 6 实验与有限元模拟结果
Table 6. Results of finite element and experiment
实验工况 靶板类型 弹体速度v0/(m·s-1) 剩余速度/(m·s-1) 单位面密度吸能EA/(J.m2.kg-1) 数值模拟剩余速度/(m.s-1) 相对误差/% 破坏情况 1 Ⅰ 1 057.2 0 ≥36.16 0 - 玻璃钢击穿,钢板临界击穿 2 Ⅱ 1 001.2 0 ≥32.43 0 - 钢板击穿,玻璃钢临界击穿 3 Ⅰ 1 194.4 327.8 42.68 343 4.6 整体击穿:玻璃钢、钢板均击穿 4 Ⅱ 1 291.7 617.7 41.64 628 1.7 整体击穿:玻璃钢、钢板均击穿 -
[1] 朱锡, 梅志远, 刘润泉, 等.舰用轻型复合装甲结构及其抗弹实验研究[J].爆炸与冲击, 2003, 23(1):61-66. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200301012.htmZHU X, MEI Z Y, LIU R Q, et al. Warship's light com-posite armor structure resistibility for ballistic impact[J]. Explosion and Shock Waves, 2003, 23(1):61-66(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200301012.htm [2] 朱锡, 侯海量, 谷美邦, 等.抵御小口径火炮弹道侵彻装甲防护模拟实验研究[J].爆炸与冲击, 2006, 26(3):262-268. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200603011.htmZHU X, HOU H L, GU M B, et al. Experimental study on armor protection against ballistic impact of small caliber artillery[J]. Explosion and Shock Waves, 2006, 26(3):262-268(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200603011.htm [3] 梅志远, 朱锡, 刘燕红, 等.纤维增强复合材料层合板弹道冲击研究进展[J].力学进展, 2003, 33(3):375-388. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200303007.htmMEI Z Y, ZHU X, LIU Y H, et al. The developments of fibre-reinforced composite laminates under ballistic impact[J]. Advances in Mechanics, 2003, 33(3):375-388(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200303007.htm [4] 王晓强, 朱锡, 梅志远.纤维增强复合材料抗侵彻研究综述[J].玻璃钢/复合材料, 2008(5):47-56. http://www.cnki.com.cn/Article/CJFDTOTAL-BLGF200805012.htmWANG X Q, ZHU X, MEI Z Y. The development of fi-ber-reinforced composites under ballistic impact[J]. Fiber Reinforced Plastics/Composites, 2008(5):47-56(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BLGF200805012.htm [5] 王晓强, 朱锡.舰船用钢的抗弹道冲击性能研究进展[J].中国造船, 2010, 51(1):227-236. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201001030.htmWANG X Q, ZHU X. Review on ballistic impact resis-tance of ship building steel[J]. Shipbuilding of China, 2010, 51(1):227-236(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201001030.htm [6] GREAVES L J. Failure mechanisms in GFRP armour[R]. UK:Unpublished UK DRA Report, 1992. http://www.oalib.com/references/16042107 [7] GREAVES L J. Progress in modeling the perforation of GFRP by ballistic projectiles[R]. UK:Unpublished UK DRA Report, 1994. http://www.oalib.com/references/16042108 [8] ZHU G Q, GOLDSMITH W, DHARAN C K H. Pene-tration of laminated Kevlar by projectiles-I. experimen-tal investigation[J]. International Journal of Solids and Structures, 1992, 29(4):399-420. doi: 10.1016/0020-7683(92)90207-A [9] ZHU G Q, GOLDSMITH W, DHARAN C K H. Pene-tration of laminated Kevlar by projectiles-II. analytical model[J]. International Journal of Solids and Struc-tures, 1992, 29(4):421-436. doi: 10.1016/0020-7683(92)90208-B [10] WEN H M, REDDY T Y, REID S R, et al. Indenta-tion, penetration and perforation of composite lami-nate and sandwich panels under quasi-static and pro-jectile loading[J]. Key Engineering Materials, 1998, 141/142/143:501-552. [11] REDDY T Y, WEN H M, REID S R, et al. Penetra-tion and perforation of composite sandwich panels by hemispherical and conical projectiles[J]. Journal of Pressure Vessel Technology, 1998, 120(2):186-194. doi: 10.1115/1.2842239 [12] REID S R, WEN H M, SODEN P D, et al. Response of single skin laminates and sandwich panels to pro-jectile impact[C]//WANG S S, WILLIAMS J J, LO K H. Composite materials for offshore operation-2.[S.l.]:American Bureau of Shipping, 1999:593-617. [13] 覃悦, 文鹤鸣, 何涛.卵形弹丸撞击下FRP层合板的侵彻和穿透[J].复合材料学报, 2007, 24(2):131-136. http://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200702022.htmQIN Y, WEN H M, HE T. Penetration and perfora-tion of FRP laminates under normal impact by ogi-val-nosed projectiles[J]. Acta Materiae Compositae Sinica, 2007, 24(2):131-136(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200702022.htm [14] 张颖军, 梅志远, 朱锡. FRP层合板低速冲击损伤特性研究现状与展望[J].玻璃钢/复合材料, 2011(1):52-58. http://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201101014.htmZHANG Y J, MEI Z Y, ZHU X. Current status and prospects of study on low velocity impact damaged characterization of fiber-reinforced composite lami-nates[J]. Fiber Reinforced Plastics/Composites, 2011(1):52-58(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201101014.htm [15] 谢恒, 吕振华.破片侵彻纤维复合材料板的有限元数值模拟[J].清华大学学报(自然科学版), 2012, 52(1):96-101. http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201201020.htmXIE H, LV Z H. Finite element simulation of FRP plates impacted by fragments[J]. Journal of Tsinghua University (Science & Technology), 2012, 52(1):96-101(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201201020.htm [16] 李茂, 朱锡, 侯海量, 等.冲击波和高速破片对固支方板的联合作用数值模拟[J].中国舰船研究, 2015, 10(6):60-67. http://www.ship-research.com/CN/abstract/abstract1455.shtmlLI M, ZHU X, HOU H L, et al. Numerical simula-tion of steel plates subjected to the impact of both im-pact waves and fragments[J]. Chinese Journal of Ship Research, 2015, 10(6):60-67(in Chinese). http://www.ship-research.com/CN/abstract/abstract1455.shtml -
2017-1-93_en.pdf
-