留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极地航行船舶及海洋平台防冰和除冰技术研究进展

谢强 陈海龙 章继峰

谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
引用本文: 谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
Citation: XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008

极地航行船舶及海洋平台防冰和除冰技术研究进展

doi: 10.3969/j.issn.1673-3185.2017.01.008
基金项目: 

国家自然科学基金资助项目 51379048

详细信息
    作者简介:

    谢强, 男, 1990年生, 博士生。研究方向:极地船舶与装备防冰和除冰技术。E-mail:455924666@qq.com

    陈海龙, 男, 1980年生, 博士。研究方向:极地大科学及项目管理

    通信作者:

    章继峰(通信作者), 男, 1976年生, 博士, 教授, 博士生导师。研究方向:极地船舶与装备防冰和除冰技术。E-mail:jfzhang@hrbeu.edu

  • 中图分类号: U674.21

Research progress of anti-icing/deicing technologies for polar ships and offshore platforms

知识共享许可协议
极地航行船舶及海洋平台防冰和除冰技术研究进展谢强,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 极地具有气候环境极端恶劣、海气交换强烈、湿度很大等特点,在此航行(或冰区航行)的船舶和海洋平台结构表面极易形成覆冰,它不仅影响设备操作,更直接威胁到船舶和海洋平台的安全。对国内外极地航行船舶及海洋平台防冰和除冰技术的现状进行综述。首先,介绍覆冰对极地航行船舶及海洋平台不同部位的影响和危害程度。然后,归纳和分析国内外现有防冰和除冰方法与技术,包括电加热、红外线、超声导波等主动除冰方法,以及超疏水涂层、牺牲性涂层、水润滑涂层以及低交联度界面滑移涂层等被动除冰方法。最后,总结现有防冰和除冰技术在极地航行船舶及海洋平台上的适用性及优缺点,为极地航行船舶及海洋平台的防除冰设计提供参考。
  • 图  海洋平台[12](左)及极地船舶[13](右)上的结冰

    Figure  1.  Ice accretion on offshore platforms[12](left) and polar ships[13](right)

    图  X型船艏防冰设计的极地航行船舶[18]

    Figure  2.  Anti-icing of polar ship with X-bow design [18]

    图  基于超声导波除冰的模态控制实验[20]

    Figure  3.  Mode control experiment of deicing by ultrasonic guided wave method[20]

    图  不同疏水涂层的铝板在-10 ℃时的冰粘附强度[32]

    Figure  4.  Ice adhesion strength values of various aluminum plates with superhydrophobiccoatingattemperaturesbelow-10℃ [32]

    图  各种表面涂覆防冰涂层前后在-15 ℃时的冰粘附强度比较[36]

    Figure  5.  Comparison of ice adhesion strength on different substrates before and after coated with the anti-icing coating at temperatures below -15 ℃[36]

    图  低交联度界面滑移涂层与其他涂层冰粘附强度对比[37]

    Figure  6.  Comparison of ice adhesion strength of PU slippage coating with other ice-phobic surfaces[37]

    表  覆冰类型和海洋平台部位或功能对平台安全性的综合影响[12]

    Table  1.  Joint safety impacts by ice type and platform component or function [12]

    表  覆冰类型和船舶部位或功能对船舶的安全性综合影响[17]

    Table  2.  Joint safety impacts by ice type and ship component or function [17]

  • [1] BIRD K J, CHARPENTIER R R, GAUTIER D L, et al. Circum-arctic resource appraisal:estimates of un-discovered oil and gas north of the arctic circle[R]. Reston, VA:The Uninted States, Geological Survey (USGS) National Center, 2008.
    [2] GAUTIER D L, BIRD K J, CHARPENTIER R R, et al. Assessment of undiscovered oil and gas in the arctic[J]. Science, 2009, 324(5931):1175-1179. doi: 10.1126/science.1169467
    [3] 朱英富, 刘祖源, 解德, 等.极地船舶核心关键基础技术现状及我国发展对策[J].中国科学基金, 2015(3):178-186. http://pub.nsfc.gov.cn/sficcn/ch/reader/create_pdf.aspx?file_no=201503178&flag=1&journal_id=sficcn&year_id=2015

    ZHU Y F, LIU Z Y, XIE D, et al. Advancements of the core fundamental technologies and strategies of Chi-na regarding the research and development on polar ships[J]. Bulletin of National Natural Science Founda-tion of China, 2015(3):178-186(in Chinese). http://pub.nsfc.gov.cn/sficcn/ch/reader/create_pdf.aspx?file_no=201503178&flag=1&journal_id=sficcn&year_id=2015
    [4] JONES K F, ANDREAS E L. Sea spray icing of drill-ing and production platforms:ERDC/CRREL TR-09-3[R]. Hanover, NH:US Army Corps of Engineerings, Engineer Research and Development Center & Cold Regions Research and Engineering Laboratory, 2009.
    [5] HORJEN I. Ice accretions on ships and marine struc-tures[R]. Trondheim, Norway:The River and Har-bour Laboratory, 1989.
    [6] BATTISTI L, FEDRIZZI R, BRIGHENTI A, et al. Sea ice and icing risk for offshore wind turbines[C]//Proceedings of the OWEMES 2006. Citavecchia, Ita-ly:[s.n.], 2006.
    [7] SAMUELSEN E M, LØSET S, EDVARDSEN K. Ma-rine icing observed on KV Nordkapp during a cold air outbreak with a developing polar low in the Barents sea[C]//Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Condi-tions. Trondheim, Norway:[s.n.], 2015.
    [8] HORJEN I. Offshore drilling rig ice accretion modeling including a surficial brine film[J]. Cold Regions Sci-ence and Technology, 2015, 119:84-110. doi: 10.1016/j.coldregions.2015.07.006
    [9] RYERSON C C. Superstructure spray and ice accretion on a large U.S. Coast Guard cutter[J]. Atmospheric Research, 1995, 36(3/4):321-337.
    [10] JONES K F, ANDREAS E L. Sea spray concentra-tions and the icing of fixed offshore structures[J]. Quarterly Journal of the Royal Meteorological Soci-ety, 2012, 138(662):131-144. doi: 10.1002/qj.v138.662
    [11] MAKKONEN L. Atmospheric icing on sea structures:AD-AI44448[R]. Hanover, NH:US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1984.
    [12] RYERSON C C. Ice protection of offshore platforms[J]. Cold Regions Science and Technology, 2011, 65(1):97-110. doi: 10.1016/j.coldregions.2010.02.006
    [13] CAMMAERT G. Marine icing on arctic offshore opera-tions[R].[S.l.]:Maritiem Innovatie Platform, 2013.
    [14] WOLD L E. A study of the changes in freeboard, sta-bility and motion response of ships and semi-submers-ible platforms due to vessel icing[D]. Stavanger:University of Stavanger, 2014.
    [15] GAUTHIER G P, COURTAY A, REBEIZ G M. Mi-crostrip antennas on synthesized low dielectric-con-stant substrates[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(8):1310-1314. doi: 10.1109/8.611252
    [16] 薛国善.船舶冬季防冻防滑工作[J].世界海运, 2013, 36(3):30-31. http://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ201303014.htm
    [17] RYERSON C C. Assessment of superstructure ice pro-tection as applied to offshore oil operations safety:ERDC/CRREL TR-08-14[R]. Hanover, NH:US Army Corps of Engineerings, Engineer Research and Development Center & Cold Regions Research and Engineering Laboratory, 2009.
    [18] Polarcus vessel photos[DB/OL]. (2015-02-17)[2016-05-09]. http://www.polarcus.com/media/1290/polarcus-alima-lr.jpg.
    [19] 陆煊, 崔玫, 曹洪波, 等.船舶防冻除冰技术现状与发展[J].船海工程, 2016, 45(2):37-39. http://www.cqvip.com/QK/95343X/201602/668579349.html

    LU X, CUI M, CAO H B, et al. Present situation and development of de-icing and prevent frostbite technol-ogy of ships[J]. Ship & Ocean Engineering, 2016, 45(2):37-39(in Chinese). http://www.cqvip.com/QK/95343X/201602/668579349.html
    [20] VILLENEUVE E, HARVEY D, ZIMCIK D, et al. Piezoelectric deicing system for rotorcraft[J]. Journal of the American Helicopter Society, 2015, 60(4):1-12.
    [21] PALACIOS J, SMITH E, ROSE J, et al. Instanta-neous de-icing of freezer ice via ultrasonic actuation[J]. AIAA Journal, 2011, 49(6):1158-1167. doi: 10.2514/1.J050143
    [22] WÅHLIN J, KLEIN-PASTE A. The effect of com-mon deicing chemicals on the hardness of compacted snow[J]. Cold Regions Science and Technology, 2015, 109:28-32. doi: 10.1016/j.coldregions.2014.09.007
    [23] WÅHLIN J, LEISINGER S, KLEIN-PASTE A. The effect of sodium chloride solution on the hardness of compacted snow[J]. Cold Regions Science and Tech-nology, 2014, 102:1-7. doi: 10.1016/j.coldregions.2014.02.002
    [24] 王冠, 张德远, 陈华伟.飞机防冰-从传统到仿生的发展[J].工业技术创新, 2014, 1(2):241-250. http://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201402021.htm

    WANG G, ZHANG D Y, CHEN H W. The develop-ment of aircraft anti-icing-from traditional to bionic[J]. Industrial Technology Innovation, 2014, 1(2):241-250(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201402021.htm
    [25] AYRES J, SIMENDINGER W H, BALIK C M. Char-acterization of titanium alkoxide sol-gel systems de-signed for anti-icing coatings:I. Chemistry[J]. Jour-nal of Coatings Technology and Research, 2007, 4(4):463-471. doi: 10.1007/s11998-007-9054-8
    [26] WONG T S, KANG S H, TANG S K Y, et al. Bioin-spired self-repairing slippery surfaces with pres-sure-stable omni-phobicity[J]. Nature, 2011, 477(7365):443-447. doi: 10.1038/nature10447
    [27] KIM P, WONG T S, ALVARENGA J, et al. Liq-uid-infused nanostructured surfaces with extreme an-ti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8):6569-6577. doi: 10.1021/nn302310q
    [28] LEE J W, HWANG W. Exploiting the silicon content of aluminum alloys to create a superhydrophobic sur-face using the sol-gel process[J]. Materials Letters, 2016, 168:83-85. doi: 10.1016/j.matlet.2015.12.137
    [29] LEI H, XIAO J, ZHENG L P, et al. Superhydropho-bic coatings based on colloid silica and fluorocopoly-mer[J]. Polymer, 2016, 86:22-31. doi: 10.1016/j.polymer.2016.01.026
    [30] PENG P P, KE Q P, ZHOU G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science, 2013, 395:326-328. doi: 10.1016/j.jcis.2012.12.036
    [31] HUANG Y, SARKAR D K, CHEN X G. Superhydro-phobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance proper-ties[J]. Applied Surface Science, 2015, 356:1012-1024. doi: 10.1016/j.apsusc.2015.08.166
    [32] WANG Y Y, XUE J, WANG Q J, et al. Verification of icephobic/anti-icing properties of a superhydropho-bic surface[J]. ACS Applied Materials & Interfaces, 2013, 5(8):3370-3381. https://www.researchgate.net/publication/236088542_Verification_of_IcephobicAnti-icing_Properties_of_A_Superhydrophobic_Surface
    [33] MEULER A J, SMITH J D, VARANASI K K, et al. Relationships between water wettability and ice adhe-sion[J]. ACS Applied Materials & Interfaces, 2010, 2(11):3100-3110. http://web.mit.edu/nnf/publications/GHM153.pdf
    [34] FARHADI S, FARZANEH M, KULINICH S A. An-ti-icing performance of superhydrophobic surfaces[J]. Applied Surface Science, 2011, 257(14):6264-6269. doi: 10.1016/j.apsusc.2011.02.057
    [35] LEE C, NAM Y, LASTAKOWSKI H, et al. Two types of Cassie-to-Wenzel wetting transitions on su-perhydrophobic surfaces during drop impact[J]. Soft Matter, 2015, 11(23):4592-4599. doi: 10.1039/C5SM00825E
    [36] DOU R M, CHEN J, ZHANG Y F, et al. Anti-icing coating with an aqueous lubricating layer[J]. ACS Applied Materials & Interfaces, 2014, 6(10):6998-7003. https://www.researchgate.net/profile/Yanlin_Song/publication/262340912_Anti-icing_Coating_with_an_Aqueous_Lubricating_Layer/links/55cb0bb108aeca747d69fdef.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    [37] GOLOVIN K, KOBAKU S P R, LEE D H, et al. De-signing durable icephobic surfaces[J]. Science Ad-vances, 2016, 2(3):e1501496. doi: 10.1126/sciadv.1501496
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1178
  • HTML全文浏览量:  199
  • PDF下载量:  319
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-17
  • 网络出版日期:  2016-12-28
  • 刊出日期:  2017-01-07

目录

    /

    返回文章
    返回