留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主成分分析的舰船装备维修费组合预测

谢力 杨怀宁 尹相平 孙玉华

谢力, 杨怀宁, 尹相平, 孙玉华. 基于主成分分析的舰船装备维修费组合预测[J]. 中国舰船研究, 2012, 7(4): 108-112. doi: 10.3969/j.issn.1673-3185.2012.04.019
引用本文: 谢力, 杨怀宁, 尹相平, 孙玉华. 基于主成分分析的舰船装备维修费组合预测[J]. 中国舰船研究, 2012, 7(4): 108-112. doi: 10.3969/j.issn.1673-3185.2012.04.019
XIE Li, YANG Huaining, YIN Xiangping, SUN Yuhua. Combination Forecasting Method of Ship Equipment Maintenance Cost withPrincipal Component Analysis[J]. Chinese Journal of Ship Research, 2012, 7(4): 108-112. doi: 10.3969/j.issn.1673-3185.2012.04.019
Citation: XIE Li, YANG Huaining, YIN Xiangping, SUN Yuhua. Combination Forecasting Method of Ship Equipment Maintenance Cost withPrincipal Component Analysis[J]. Chinese Journal of Ship Research, 2012, 7(4): 108-112. doi: 10.3969/j.issn.1673-3185.2012.04.019

基于主成分分析的舰船装备维修费组合预测

doi: 10.3969/j.issn.1673-3185.2012.04.019
基金项目: 海军工程大学基金项目(HGDQNJJ041,HGDQNEQJJ11016)
详细信息
    作者简介:

    谢力(1980-),男,博士研究生。研究方向:系统工程、装备经济管理。

    通信作者:

    谢力

  • 中图分类号: U672.7

Combination Forecasting Method of Ship Equipment Maintenance Cost withPrincipal Component Analysis

More Information
    Corresponding author: XIE Li
知识共享许可协议
基于主成分分析的舰船装备维修费组合预测谢力,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 针对基于回归的组合预测模型,由于舰船装备维修费预测时可利用的样本小、可用的单项预测方法多,容易导致预测模型的数量比用于组合预测的样本数量多,出现回归系数无法估计的问题。在建立基于回归的舰船装备维修费组合预测模型前,首先对各单项预测方法预测结果进行主成分分析,建立舰船装备维修费实际值在选取主成分上的回归模型,给出基于主成分分析的组合预测模型;然后针对主成分分析中根据主成分的累积贡献率确定主成分数量具有一定的主观性,建议采用AIC确定主成分的数量;最后,采用实例对给出的方法进行分析和验证。结果表明:在舰船装备维修费组合预测中,该方法不仅解决了预测模型多于用来组合预测的样本数量问题,而且还可以解决单项预测方法之间的共线性问题,且其预测性能明显优于常用的组合预测模型。
  • XIE L,WEI R X,JIANG T J,et al. Generalized PLS regression forecast modeling of warship equipment maintenance cost[C]/16th International Conference on Management Science and Engineering. Washington:IEEE Press,2009:607-612.
    谢力,魏汝祥,于伟宗. 舰船装备维修费预测方法评 价准则体系研究[J]. 中国舰船研究,2011,6(2): 98-102. XIE L,WEI R X,YU W Z. Evaluation criteria system of forecasting methods for maintenance cost of ship equipment[J]. Chinese Journal of Ship Research, 2011,6(2):98-102.
    谢力,魏汝祥,訾书宇,等. 基于包容性检验的舰船装 备维修费组合预测[J]. 系统工程与电子技术,2010, 32(12):2599-2602. XIE L,WEI R X,ZI S Y,et al. Combined forecasting of ship equipment maintenance cost based on encompassing tests[J]. Systems Engineering and Electronics,2010,32(12):2599-2602.
    WEI R X,XIE L,YIN X P,et al. Combined forecasting of ship equipment maintenance cost with AHP and odds-matrix method[C]/The Proceedings of 2010 Conference on System Sciences, Management Sciences and System Dynamics. China, Beijing:Publishing House of Electronics Industry,2010(4):115-122.
    GRANGER C W J, RAMANATHAN R. Improved methods of combining forecasts[J]. Journal of Forecasting,1984,3(2):197-204.
    WEI X Q. Regression-based forecast combination methods[J]. Romanian Journal of Economic Forecasting, 2009,10(4):5-18.
    TIMMERMAN A. Forecast combinations[M]/ELLIOTT G,GRANGER C W J,TIMMERMAN A. Handbook of Economic Forecasting. North-Holland:Elsevier,2006:135-196.
    GRANGER C W J,JEON Y. Thick modeling[J]. Economic Modeling,2004,21(2):323-343.
    AIOLFI M,FAVERO C A. Model uncertainty,thick modeling and the predictability of stock returns[J]. Journal of Forecasting,2005,24(4):233-254.
    AIOLFI M,TIMMERMANN A. Persistence in forecasting performance and conditional combination strategies[J]. Journal of Econometrics,2006,135(1/ 2):31-53.
    CAMACHO J,PIC J,FERRER A. Data understanding with PCA:structural and variance information plots[J]. Chemometrics and Intelligent Laboratory Systems,2010,100(1):48-56.
    PEARSON K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine, 1901,2(11):559-572.
    HOTELLING H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology,1933,24(6):417-441.
    马丽艳,李宏伟. 一种基于非线性PCA的卷积混合 盲源分离算法[J]. 电子学报,2008,36(5):1009- 1012. MA L Y,LI H W. An algorithm based on nonlinear PCA for blind separation of convolutive mixtures[J]. Acta Electronica Sinica,2008,36(5):1009-1012.
    宋怀波,路长厚,邱化冬. 基于概率PCA 模型的压 印字符集本征维数确定方法[J]. 光电子激光, 2010,21(5):754-757. SONG H B,LU C H,QIU H D. Determine the intrinsic dimension of protuberant characters based on probabilistic PCA modeling method[J]. Journal of Optoelectronics. Laser,2010,21(5):754-757.
    王洪斌,肖金壮,王洪瑞. 数控系统连接相关故障的 核PCA 监测方法[J]. 制造技术与机床,2009,59 (7):94-97. WANG H B,XIAO J Z,WANG H R. Monitoring method on connection dependent faults in numerical control system using kernel PCA[J]. Manufacturing Technology and Machine Tool,2009,59(7):94-97.
    KOLASSA S. Combining exponential smoothing forecasts using Akaike weights[J]. International Journal of Forecasting,2011,27(2):238-251.
    訾书宇,魏汝祥,周萍. 基于RBF 神经网络的舰船 维修费预测[J]. 中国水运(学术版),2007,2(5): 164-165. ZI S Y,WEI R X,ZHOU P. Ship maintenance cost forecasting based on RBF neural network[J]. China Water Transport,2007,2(5):164-165.
    ANDRAWIS R R,ATIYA A F,EI-SHISHINY H. Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition[J]. International Journal of Forecasting, 2011,27(3):672-688.
    ANDRAWIS R R,ATIYA A F,EI-SHISHINY H. Combination of long term and short term forecasts, with application to tourism demand forecasting[J]. International Journal of Forecasting,2011,27(3):870- 886.
    DIKS C G H,VRUGT J A. Comparison of point forecast accuracy of model averaging methods in hydrologic applications[J]. Stochastic Environmental Research and Risk Assessment,2010,24(6):809-820.
  • 加载中
计量
  • 文章访问数:  135
  • HTML全文浏览量:  41
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-31
  • 录用日期:  2012-08-20
  • 修回日期:  2012-03-23
  • 刊出日期:  2012-08-25

目录

    /

    返回文章
    返回