罗强军, 刘均, 江璞玉, 等. 船舶舱段结构大规模分解优化的约束调节及计算资源分配策略[J]. 中国舰船研究, 2024, 19(X): 1–9. doi: 10.19693/j.issn.1673-3185.03677
引用本文: 罗强军, 刘均, 江璞玉, 等. 船舶舱段结构大规模分解优化的约束调节及计算资源分配策略[J]. 中国舰船研究, 2024, 19(X): 1–9. doi: 10.19693/j.issn.1673-3185.03677
LUO Q J, LIU J, JIANG P Y, et al. Constraint adjustment and computational resource allocation strategies for decomposition-based large-scale optimization of ship cabin structures[J]. Chinese Journal of Ship Research, 2024, 19(X): 1–9 (in Chinese. doi: 10.19693/j.issn.1673-3185.03677
Citation: LUO Q J, LIU J, JIANG P Y, et al. Constraint adjustment and computational resource allocation strategies for decomposition-based large-scale optimization of ship cabin structures[J]. Chinese Journal of Ship Research, 2024, 19(X): 1–9 (in Chinese. doi: 10.19693/j.issn.1673-3185.03677

船舶舱段结构大规模分解优化的约束调节及计算资源分配策略

Constraint adjustment and computational resource allocation strategies for decomposition-based large-scale optimization of ship cabin structures

  • 摘要:
    目的 为提升船舶舱段大规模优化设计中分解优化方法的应用效果,提出一种约束渐进放松调节策略,以及一种综合考虑目标贡献度和约束裕度的计算资源分配策略。
    方法 约束渐进放松调节策略:初始给定一个加严的约束限界,再逐步放松直到恢复至原约束限界值,以使得所有子问题得到更充分的优化;计算资源分配策略:按照子问题对目标函数的贡献大小以及子问题的约束裕度大小来综合分配优化计算资源;将两个策略结合应用,分析它们的耦合效应。
    结果 与原算法相比,同等计算资源下,约束渐进放松调节策略和计算资源分配策略在原来优化结果的基础上,分别减重10.3%、7.0%,两策略共同作用减重22.2%。
    结论 所提出策略效果显著,在船舶结构大规模分解优化中有较大的价值。

     

    Abstract:
    Objective To enhance the application effectiveness of the decomposition-based optimization method in the large-scale optimization design of ship cabin structures, a constraint progressive relaxation adjustment strategy and a computational resource allocation strategy considering both the contribution of the sub-problem to the objective and the margin of constraints of the sub-problem are proposed.
    Methods Constraint progressive relaxation adjustment strategy: Initially, a tightened constraint boundary is given, and then gradually relaxed, until it is recovered to the original constraint boundary, so that all subproblems can be more fully optimized. Computational resource allocation strategy: Optimization computing resources are comprehensively allocated based on the contribution of the subproblem to the objective and the margin of constraints of the subproblem. The two strategies are combined and their coupling effects are analyzed.
    Results  Compared with the original algorithm, under the same computational resource, the cabin weight is reduced by 10.3% and 7.0% when using the constraint progressive relaxation adjustment strategy and computational resource allocation strategy respectively, the weight is reduced by 22.2% when both strategies are applied simultaneously, relative to the weight obtained by the original optimization method.
    Conclusion  The proposed strategies are effective and valuable in the decomposition-based large-scale optimization of ship structures.

     

/

返回文章
返回