徐双喜, 张浩坤, 谌伟, 等. 船用铝合金薄板低速冲击力学行为研究[J]. 中国舰船研究, 2024, 19(X): 1–10. doi: 10.19693/j.issn.1673-3185.03648
引用本文: 徐双喜, 张浩坤, 谌伟, 等. 船用铝合金薄板低速冲击力学行为研究[J]. 中国舰船研究, 2024, 19(X): 1–10. doi: 10.19693/j.issn.1673-3185.03648
XU S X, ZHANG H K, SHEN W, et al. Research on mechanical behavior of low-speed impact resistance of marine aluminum alloy sheet[J]. Chinese Journal of Ship Research, 2024, 19(X): 1–10 (in Chinese. doi: 10.19693/j.issn.1673-3185.03648
Citation: XU S X, ZHANG H K, SHEN W, et al. Research on mechanical behavior of low-speed impact resistance of marine aluminum alloy sheet[J]. Chinese Journal of Ship Research, 2024, 19(X): 1–10 (in Chinese. doi: 10.19693/j.issn.1673-3185.03648

船用铝合金薄板低速冲击力学行为研究

Research on mechanical behavior of low-speed impact resistance of marine aluminum alloy sheet

  • 摘要:
    目的 为研究船用铝合金薄板在低速冲击载荷作用下的力学行为,开展5059-H116铝合金板的水平低速冲击动态响应试验。
    方法 基于冲击试验,对比不同冲击速度和不同冲击质量下试板的损伤和动态响应;基于混合硬化塑性模型建立低速冲击数值模型,对不同冲击速度作用下的失效过程进行数值模拟,结合有限元方法分析试板尺寸、冲击位置和撞头形状对临界破坏能量的影响,并提出关于临界破坏能量的修正经验公式。
    结果 研究结果表明,随着冲击速度的增加,试板临界破坏能量相应增加,但其增幅很小;在相同的冲击能量下,不同的冲击质量对铝合金板的临界破坏能量没有影响;临界破坏能量对试板长宽比的敏感性很小;相同截面积的钝面撞头冲击试板的临界破坏能量可以视为等效。
    结论 研究成果可为铝合金薄板的低速冲击力学行为及承载能力研究提供参考。

     

    Abstract:
    Objectives To study the mechanical behavior of aluminum alloy sheet for ships under low-speed impact loads, horizontal low-speed impact dynamic response tests were conducted on 5059-H116 aluminum alloy plates.
    Methods Based on impact tests, compare the damage and dynamic response of test plates under different impact speeds and masses. Based on a mixed hardening plastic model, a low-speed impact numerical model is established to numerically simulate the failure process under different impact velocities. The finite element method is used to analyze the influence of specimen size, impact position, and impact head shape on the critical failure energy, and a modified empirical formula for the critical failure energy is proposed.
    Results The research results indicate that with the increase of impact velocity, the critical failure energy of the test plate increases correspondingly, but the increase is very small. Under the same impact energy, different impact masses have no effect on the critical failure energy of aluminum alloy sheet. The sensitivity of critical failure energy to the aspect ratio of the test plate is very small. The critical failure energy of blunt impact test plates with the same cross-sectional area can be considered equivalent.
    Conclusions The research results can provide reference for the study of low-speed impact mechanical behavior and load-bearing capacity of aluminum alloy sheet.

     

/

返回文章
返回