陈永强, 张显涛. 融合有限元理论的离散模块梁单元方法及其在复杂超大型浮体上的应用[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03631
引用本文: 陈永强, 张显涛. 融合有限元理论的离散模块梁单元方法及其在复杂超大型浮体上的应用[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03631
Finite Element Based Discrete-Module-Beam Method And Its Applications In Complex VLFS[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03631
Citation: Finite Element Based Discrete-Module-Beam Method And Its Applications In Complex VLFS[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03631

融合有限元理论的离散模块梁单元方法及其在复杂超大型浮体上的应用

Finite Element Based Discrete-Module-Beam Method And Its Applications In Complex VLFS

  • 摘要: 【目的】将有限元理论融入离散模块梁单元(DMB)方法,优化集中质量刚度矩阵的求解方式,使DMB方法更易于处理复杂超大型浮体问题。【方法】首先使用三维势流理论进行水动力分析并给出水弹性方程;接着引入有限元理论,将每个子模块离散为若干微小梁单元求解刚度阵,并基于子结构法和矩阵理论推导集中质量刚度矩阵;在处理复杂边界条件,根据边界约束模式,采用划零置一法或直接在刚度阵中增加约束项进行处理;在处理复杂连接条件时,首先更改节点编号,再根据连接件特点建立连接件约束 矩阵并将其融入到总刚度阵中。【结果】使用DMB方法计算了边界条件选取固定端和弹簧-阻尼端,连接件选取铰接、刚性连接和弹簧阻尼连接等复杂超大型浮体的位移响应,所得结果与直接法吻合较好。【结论】融合有限元理论的DMB方法能够方便快速、准确地处理复杂超大型浮体在多种复杂工况下的水弹性响应。

     

    Abstract: Objectives Emerge the Finite element method into the DMB (Discrete-Module-Beam) method and improve the derivation of the lumped-mass stiffness matrix in order to efficiently apply the DMB method in complex and compound VLFS. Methods The 3D potential flow theory is first introduced in the DMB method to establish the hydroelastic equation. The finite element theory is then introduced to discretize each macro-submodule into micro beam elements and the lumped-mass matrix is derived based on the sub-structure approach and matrix manipulations. In dealing with complex boundary conditions, the cross-zeros-set-one approach or adding an additional constraint into the total stiffness matrix is adopted. In dealing with complex interconnections, the node numbering is first altered and then an additional constraint stiffness matrix is added into the total stiffness matrix. Results The DMB method is applied to VLFS with fixed/spring-damped boundary conditions and VLFS with hinged/rigid/spring-damped interconnections and good agreement is shown with results from the direct method. Conclusions The DMB method with the finite element theory is capable of analyzing hydroelasticity of VLFS in complex engineering scenarios in a fast and accurate way.

     

/

返回文章
返回