[1] |
ZHELUDEV N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582–583. doi: 10.1126/science.1186756
|
[2] |
周济, 于相龙. 智能超材料的创新特性与应用前景[J]. 中国工业和信息化, 2018(8): 20–28. doi: 10.3969/j.issn.1674-9138.2018.08.004ZHOU J, YU X L. Innovative properties and application prospects of smart metamaterials[J]. China Industry & Information Technology, 2018(8): 20–28 (in Chinese). doi: 10.3969/j.issn.1674-9138.2018.08.004
|
[3] |
YU X L, ZHOU J, LIANG H Y, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review[J]. Progress in Materials Science, 2018, 94: 114–173. doi: 10.1016/j.pmatsci.2017.12.003
|
[4] |
MARTIN A, KADIC M, SCHITTNY R, et al. Phonon band structures of three-dimensional pentamode metamaterials[J]. Physical Review B: Covering Condensed Matter and Materials Physics, 2012, 86(15): 155116. doi: 10.1103/PhysRevB.86.155116
|
[5] |
科学技术部. 声学超构材料术语: T/CSPSTC 61-2020[S]. 北京. 全国团体标准信息平台, 2021.Ministry of Science and Technology. Terminology of acous-tic metamaterials: T/CSPSTC 61-2020[S]. Beijing. Nation-al Group Standard Information Platform, 2021 (in Chinese).
|
[6] |
WEGENER M. Metamaterials beyond optics[J]. Science, 2013, 342(6161): 939–940. doi: 10.1126/science.1246545
|
[7] |
CADDOCK B D, EVANS K E. Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties[J]. Journal of Physics D: Applied Physics, 1989, 22(12): 1877. doi: 10.1088/0022-3727/22/12/012
|
[8] |
EVANS K E, CADDOCK B D. Microporous materials with negative poisson's ratios. II. Mechanisms and interpretation[J]. Journal of Physics D: Applied Physics, 1989, 22(12): 1883. doi: 10.1088/0022-3727/22/12/013
|
[9] |
于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1–14. doi: 10.3901/JME.2018.13.001YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative poisson's ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1–14 (in Chinese). doi: 10.3901/JME.2018.13.001
|
[10] |
RAYNEAU-KIRKHOPE D J, DIAS M A. Designing recipes for auxetic behaviour of 2-D lattices[J/OL]. Materials Science, 2016 (2016-02-19). https://arxiv.org/abs/1602.06105.
|
[11] |
GREAVES G N, GREER A L, LAKES R S, et al. Poisson's ratio and modern materials[J]. Nature Materials, 2011, 10(11): 823–837. doi: 10.1038/nmat3134
|
[12] |
NOVAK N, VESENJAK M, REN Z. Auxetic cellular materials-a review[J]. Journal of Mechanical Engineering, 2016, 62(9): 485–493. doi: 10.5545/sv-jme.2016.3656
|
[13] |
江坤, 陶猛. 六韧带手性蜂窝结构覆盖层的动态压缩行为研究[J]. 舰船科学技术, 2017, 39(19): 55–60.JIANG K, TAO M. A study of the dynamic compression behavior of hexagonal honeycomb layer[J]. Ship Science and Technology, 2017, 39(19): 55–60 (in Chinese).
|
[14] |
尹剑飞, 蔡力, 方鑫, 等. 力学超材料研究进展与减振降噪应用[J]. 力学进展, 2022, 52(3): 508–586.YIN J F, CAI L, FANG X, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control[J]. Advances in Mechanics, 2022, 52(3): 508–586 (in Chinese).
|
[15] |
PRALL D, LAKES R S. Properties of a chiral honeycomb with a Poisson's ratio of -1[J]. International Journal of Mechanical Sciences, 1997, 39(3): 305–307, 309-314. doi: 10.1016/S0020-7403(96)00025-2
|
[16] |
秦浩星, 杨德庆. 任意负泊松比超材料结构设计的功能基元拓扑优化法[J]. 复合材料学报, 2018, 35(4): 1014–1023.QIN H X, YANG D Q. Functional element topology optimal method of metamaterial design with arbitrary nega-tive Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 1014–1023 (in Chinese).
|
[17] |
QIN H X, YANG D Q, REN C H. Design method of lightweight metamaterials with arbitrary Poisson's ratio[J]. Materials, 2018, 11(9): 1574. doi: 10.3390/ma11091574
|
[18] |
QIN H X, YANG D Q, REN C H. Modelling theory of functional element design for metamaterials with arbitrary negative Poisson's ratio[J]. Computational Materials Science, 2018, 150: 121–133. doi: 10.1016/j.commatsci.2018.03.056
|
[19] |
杨德庆, 秦浩星. 基于功能基元拓扑优化法的任意正泊松比超材料结构设计[J]. 上海交通大学学报, 2019, 53(7): 819–829.YANG D Q, QIN H X. Metamaterials design with arbitrary poisson's ratio by functional element topology optimization[J]. Journal of Shanghai Jiao Tong University, 2019, 53(7): 819–829 (in Chinese).
|
[20] |
伍莉, 刘均, 程远胜. 方形蜂窝夹芯夹层板弯曲问题的新解法[J]. 船舶力学, 2012, 16(8): 926–934. doi: 10.3969/j.issn.1007-7294.2012.08.012WU L, LIU J, CHENG Y S. A new algorithm for solving bending response of square-honeycomb sandwich plates[J]. Journal of Ship Mechanics, 2012, 16(8): 926–934 (in Chinese). doi: 10.3969/j.issn.1007-7294.2012.08.012
|
[21] |
于辉, 白兆宏, 姚熊亮. 蜂窝夹层板的优化设计分析[J]. 中国舰船研究, 2012, 7(2): 60–64. doi: 10.3969/j.issn.1673-3185.2012.02.011YU H, BAI Z H, YAO X L. The optimization design and analysis of honeycomb sandwich panel[J]. Chinese Journal of Ship Research, 2012, 7(2): 60–64 (in Chinese). doi: 10.3969/j.issn.1673-3185.2012.02.011
|
[22] |
佟玥, 王珂, 尹群. 新型舱壁结构抗侵彻性能的数值仿真[J]. 舰船科学技术, 2015, 37(1): 11–16. doi: 10.3404/j.issn.1672-7649.2015.01.003TONG Y, WANG K, YIN Q. Numerical simulation study on performance of new bulkhead structure under impact of high speed fragment[J]. Ship Science and Technology, 2015, 37(1): 11–16 (in Chinese). doi: 10.3404/j.issn.1672-7649.2015.01.003
|
[23] |
陈攀. 填充超弹性材料夹层板的抗爆性能研究[J]. 舰船科学技术, 2016, 38(17): 24–30.CHEN P. Research on anti-shock capability of sandwich plate with hyperelastic material[J]. Ship Science and Technology, 2016, 38(17): 24–30 (in Chinese).
|
[24] |
ZHANG P, MO D H, GE X X, et al. Experimental investigation into the synergetic damage of foam-filled and unfilled corrugated core hybrid sandwich panels under combined blast and fragment loading[J]. Composite Structures, 2022, 299: 116089. doi: 10.1016/j.compstruct.2022.116089
|
[25] |
宫晓博, 刘宇鸿, 于昌利, 等. 不同泊松比蜂窝结构抗冲击性能数值分析[J]. 中国舰船研究, 2023, 18(2): 1–10.GONG X B, LIU Y H, YU C L, et al. Numerical analysis of impact resistance of honeycomb structures with different Poisson's ratios[J]. Chinese Journal of Ship Research, 2023, 18(2): 1–10. (in Chinese).
|
[26] |
李俊杰, 陶猛, 叶韩峰. 负泊松比蜂窝空腔覆盖层水下爆炸抗冲性能研究[J]. 振动与冲击, 2019, 38(21): 126–132.LI J J, TAO M, YE H F. Anti-shock performance of honeycomb claddings with negative Poisson's ratio subjected to UNDEX[J]. Journal of Vibration and Shock, 2019, 38(21): 126–132 (in Chinese).
|
[27] |
杨德庆, 张相闻, 吴秉鸿. 负泊松比效应防护结构抗爆抗冲击性能影响因素[J]. 上海交通大学学报, 2018, 52(4): 379–387.YANG D Q, ZHANG X W, WU B H. The influence factors of explosion and shock resistance performance of auxetic sandwich defensive structures[J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 379–387 (in Chinese).
|
[28] |
杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究[J]. 爆炸与冲击, 2019, 39(6): 065102.YANG D Q, WU B H, ZHANG X W. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core[J]. Explosion and Shock Waves, 2019, 39(6): 065102 (in Chinese).
|
[29] |
殷彩玉, 金泽宇, 谌勇, 等. 耐压抗冲覆盖层在水下爆炸载荷作用下的冲击防护特性[J]. 中国舰船研究, 2018, 13(3): 46–52. doi: 10.19693/j.issn.1673-3185.01203YIN C Y, JIN Z Y, CHEN Y, et al. Shock mitigation properties of compound claddings subjected to underwater explosion loads[J]. Chinese Journal of Ship Research, 2018, 13(3): 46–52 (in Chinese). doi: 10.19693/j.issn.1673-3185.01203
|
[30] |
罗放, 杨德庆. 连续爆炸冲击下负泊松比超材料防护结构性能研究[J]. 振动与冲击, 2022, 41(2): 74–78, 112.LUO F, YANG D Q. Protection performance analysis of auxetic structures under continuous explosive impact[J]. Journal of Vibration and Shock, 2022, 41(2): 74–78, 112 (in Chinese).
|
[31] |
李应刚, 张雨, 朱凌, 等. 船用蜂窝金属夹芯板重复冲击实验研究[J]. 船舶力学, 2021, 25(5): 637–644. doi: 10.3969/j.issn.1007-7294.2021.05.012LI Y G, ZHANG Y, ZHU L, et al. Experimental study on the dynamic behaviours of honeycomb sandwich plates under repeated impacts[J]. Journal of Ship Mechanics, 2021, 25(5): 637–644 (in Chinese). doi: 10.3969/j.issn.1007-7294.2021.05.012
|
[32] |
ZHANG Y, LI Y G, GUO K L, et al. Dynamic mechanic-al behaviour and energy absorption of aluminium honey-comb sandwich panels under repeated impact loads[J]. Ocean Engineering, 2021, 219: 108344. doi: 10.1016/j.oceaneng.2020.108344
|
[33] |
LI S, YANG J S, SCHMIDT R, et al. Compression and hysteresis responses of multilayer gradient composite lattice sandwich panels[J]. Marine Structures, 2021, 75: 102845. doi: 10.1016/j.marstruc.2020.102845
|
[34] |
张振华, 牛闯, 钱海峰, 等. 六层金字塔点阵夹芯板结构在水下近距爆炸载荷下的冲击实验[J]. 中国舰船研究, 2016, 11(4): 51–58, 66. doi: 10.3969/j.issn.1673-3185.2016.04.008ZHANG Z H, NIU C, QIAN H F, et al. Impact experiment of six-layer pyramidal lattices sandwich panels sub-jected to near field underwater explosion[J]. Chinese Jour-nal of Ship Research, 2016, 11(4): 51–58, 66 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.04.008
|
[35] |
ZHANG Z H, JIN X. Study on the energy dissipation mechanism of the pyramidal lattice sandwich panel subjected to underwater explosion[J]. Marine Structures, 2022, 85: 103243. doi: 10.1016/j.marstruc.2022.103243
|
[36] |
MOONGKHAMKLANG P, ELZEY D M, WADLEY H N G. Titanium matrix composite lattice structures[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 176–187. doi: 10.1016/j.compositesa.2007.11.007
|
[37] |
杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构[J]. 爆炸与冲击, 2015, 35(2): 243–248. doi: 10.11883/1001-1455(2015)02-0243-06YANG D Q, MA T, ZHANG G L. A novel auxetic broadside defensive structure for naval ships[J]. Explosion and Shock Waves, 2015, 35(2): 243–248 (in Chinese). doi: 10.11883/1001-1455(2015)02-0243-06
|
[38] |
LI C, SHEN H S, YANG J. Low-velocity impact response of cylindrical sandwich shells with auxetic 3D double-V meta-lattice core and FG GRC facesheets[J]. Ocean Engineering, 2022, 262: 112299. doi: 10.1016/j.oceaneng.2022.112299
|
[39] |
CORREA D M, KLATT T, CORTES S, et al. Negative stiffness honeycombs for recoverable shock isolation[J]. Rapid Prototyping Journal, 2015, 21(2): 193–200. doi: 10.1108/RPJ-12-2014-0182
|
[40] |
任晨辉. 船舶负刚度超材料与结构的设计方法和性能研究[D]. 上海: 上海交通大学, 2020.REN C H. Research on design method and mechanical properties of negative stiffness[D]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese).
|
[41] |
LI Q, YANG D Q, REN C H, et al. A systematic group of multidirectional buckling-based negative stiffness meta-materials[J]. International Journal of Mechanical Sciences, 2022, 232: 107611. doi: 10.1016/j.ijmecsci.2022.107611
|
[42] |
任晨辉, 杨德庆. 二维负刚度负泊松比超材料及其力学性能[J]. 哈尔滨工程大学学报, 2020, 41(8): 1129–1135.REN C H, YANG D Q. Mechanical properties of a 2D metamaterial with negative stiffness and negative Poisson's ratio[J]. Journal of Harbin Engineering University, 2020, 41(8): 1129–1135 (in Chinese).
|
[43] |
任晨辉, 杨德庆. 船用新型多层负刚度冲击隔离器性能分析[J]. 振动与冲击, 2018, 37(20): 81–87.REN C H, YANG D Q. Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure[J]. Journal of Vibration and Shock, 2018, 37(20): 81–87 (in Chinese).
|
[44] |
李琛, 欧阳清. 基于增材制造的多胞结构船底板框架性能研究[J]. 舰船科学技术, 2019, 41(1): 44–47.LI C, OUYANG Q. Research on the performance of bottom plate frame with multi-cell structure based on AM[J]. Ship Science and Technology, 2019, 41(1): 44–47 (in Chinese).
|
[45] |
LI N, ZHANG D Q, LIU H T, et al. Optimal design and strength reliability analysis of pressure shell with grid sandwich structure[J]. Ocean Engineering, 2021, 223: 108657. doi: 10.1016/j.oceaneng.2021.108657
|
[46] |
FANG H, ZHU H D, LI A J, et al. A multiscale material-structure-hydroelasticity coupled analytical model for floating sandwich structures with hierarchical cores[J]. Marine Structures, 2021, 79: 103055. doi: 10.1016/j.marstruc.2021.103055
|
[47] |
CHEN Y X, MA H J, LI A J, et al. Hydroelastic analysis of double-segment floating sandwich structures under wave action[J]. Ocean Engineering, 2022, 260: 111993. doi: 10.1016/j.oceaneng.2022.111993
|
[48] |
李杰锋, 沈星, 陈金金. 零泊松比胞状结构的单胞面内等效模量分析及其影响因素[J]. 航空学报, 2015, 36(11): 3616–3629. doi: 10.7527/S1000-6893.2015.0063LI J F, SHEN X, CHEN J J. Single cells' in-plane equivalent moduli analysis of zero Poisson's ratio cellular structures and their effects factor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3616–3629 (in Chinese). doi: 10.7527/S1000-6893.2015.0063
|
[49] |
杨德庆, 钟山. 零泊松比超材料设计的多评价点功能基元拓扑优化方法[J]. 复合材料学报, 2020, 37(12): 3229–3241.YANG D Q, ZHONG S. Functional element topology optimization method based on multiple evaluation points for metamaterial design with zero Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3229–3241 (in Chinese).
|
[50] |
LI Q, YANG D Q, MAO X. Pressure-resistant cylindrical shell structures comprising graded hybrid zero Poisson's ratio metamaterials with designated band gap characteristics[J]. Marine Structures, 2022, 84: 103221. doi: 10.1016/j.marstruc.2022.103221
|
[51] |
张梗林, 杨德庆. 船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J]. 振动与冲击, 2013, 32(22): 68–72, 78.ZHANG G L, YANG D Q. Optimization design of an auxetic honeycomb isolator in a ship[J]. Journal of Vibration and Shock, 2013, 32(22): 68–72, 78 (in Chinese).
|
[52] |
吴秉鸿, 张相闻, 杨德庆. 负泊松比超材料隔振基座的实船应用分析[J]. 船舶工程, 2018, 40(2): 56–62.WU B H, ZHANG X W, YANG D Q. Real ship application analysis of vibration isolation base made by auxetic metamaterials[J]. Ship Engineering, 2018, 40(2): 56–62 (in Chinese).
|
[53] |
吴秉鸿, 张相闻, 杨德庆. 星型负泊松比多孔材料力学性能及应用研究[J]. 固体力学学报, 2018, 39(2): 139–151.WU B H, ZHANG X W, YANG D Q. Mechanical properties and application of the star-shaped cellular Auxetic material[J]. Chinese Journal of Solid Mechanics, 2018, 39(2): 139–151 (in Chinese).
|
[54] |
杨德庆, 夏利福. 负泊松比超材料浮筏设计与减振机理研究[J]. 中国造船, 2018, 59(3): 144–154.YANG D Q, XIA L F. Vibration reduction mechanism and design method of floating raft with auxetic components[J]. Shipbuilding of China, 2018, 59(3): 144–154 (in Chinese).
|
[55] |
李清. 船舶振动声学耦合分析及减振降噪超材料设计[D]. 上海: 上海交通大学, 2020.LI Q. Vibroacoustic analysis and metamaterials design in vibration control of ships[D]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese).
|
[56] |
张兆龙, 朱翔, 李天匀, 等. 含负泊松比超材料肋板的双层板声振特性分析[J]. 振动与冲击, 2022, 41(15): 273–279.ZHANG Z L, ZHU X, LI T Y, et al. Acoustic and vibration characteristics analysis of double-layer plates with negative Poisson's ratio metamaterial ribs[J]. Journal of Vibration and Shock, 2022, 41(15): 273–279 (in Chinese).
|
[57] |
夏利福, 杨德庆. 含负泊松比超材料肋板的双层圆柱壳声振性能分析[J]. 振动与冲击, 2018, 37(18): 138–144.XIA L F, YANG D Q. Acoustics and vibration analysis of a double cylindrical shell with lightweight auxetic metamaterial ribs[J]. Journal of Vibration and Shock, 2018, 37(18): 138–144 (in Chinese).
|
[58] |
LI Q, LI P C, GUO Y J, et al. A comparative study on mechanical and vibroacoustic performance of sandwich cylindrical shells with positive, negative, and zero Poisson's ratio cellular cores[J/OL]. Journal of Ocean Engineering and Science, 2022. (2022-08-31) [2022-10-26].https://www.sciencedirect.com/science/article/pii/S2468013322002388.
|
[59] |
GUO X S, NIAN T K, WANG F W, et al. Landslides impact reduction effect by using honeycomb-hole sub-marine pipeline[J]. Ocean Engineering, 2019, 187: 106155. doi: 10.1016/j.oceaneng.2019.106155
|
[60] |
王金友, 沈超明, 姜文安, 等. 船用聚氨酯蜂窝板的隔声特性研究[J]. 舰船科学技术, 2022, 44(6): 60–64. doi: 10.3404/j.issn.1672-7649.2022.06.012WANG J Y, SHEN C M, JIANG W A, et al. Sound insulation characteristics of marine polyurethane honeycomb board[J]. Ship Science and Technology, 2022, 44(6): 60–64 (in Chinese). doi: 10.3404/j.issn.1672-7649.2022.06.012
|
[61] |
KADIC M, BÜCKMANN T, STENGER N, et al. On the practicability of pentamode mechanical metamaterials[J]. Applied Physics Letters, 2012, 100(19): 191901. doi: 10.1063/1.4709436
|
[62] |
于相龙, 周济. 智能超材料研究与进展[J]. 材料工程, 2016, 44(7): 119–128. doi: 10.11868/j.issn.1001-4381.2016.07.020YU X L, ZHOU J. Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016, 44(7): 119–128 (in Chinese). doi: 10.11868/j.issn.1001-4381.2016.07.020
|
[63] |
ZHAO A G, ZHAO Z G, ZHANG X D, et al. Design and experimental verification of a water-like pentamode material[J]. Applied Physics Letters, 2017, 110(1): 011907. doi: 10.1063/1.4973924
|
[64] |
CHEN Y, ZHENG M Y, LIU X N, et al. Broadband solid cloak for underwater acoustics[J]. Physical Review B: Covering Condensed Matter and Materials Physics, 2017, 95(18): 180104. doi: 10.1103/PhysRevB.95.180104
|
[65] |
SUN Z Y, SUN X C, JIA H, et al. Quasi-isotropic underwater acoustic carpet cloak based on latticed pentamode metafluid[J]. Applied Physics Letters, 2019, 114(9): 094101. doi: 10.1063/1.5085568
|
[66] |
王兆宏, 李青蔚, 蔡成欣, 等. 可用于隔声和带隙调控的五模式超材料[J]. 声学学报, 2017, 42(5): 610–618.WANG Z H, LI Q W, CAI C X, et al. Pentamode metamaterials used for sound insulation and band gap controlling consisting of double-cones[J]. Acta Acustica, 2017, 42(5): 610–618 (in Chinese).
|
[67] |
REN C H, LI Q, YANG D Q. Quasi-static and sound insulation performance of a multifunctional cylindrical cellu-lar shell with bidirectional negative-stiffness metamaterial cores[J]. International Journal of Mechanical Sciences, 2020, 180: 105662. doi: 10.1016/j.ijmecsci.2020.105662
|
[68] |
郭子健, 薛斌, 薛程, 等. 柴油机周期双层隔振系统振动特性[J]. 船舶工程, 2019, 41(8): 51–55.GUO Z J, XUE B, XUE C, et al. Vibration characteristics of double-layer vibration isolation system with periodic intermediate structure[J]. Ship Engineering, 2019, 41(8): 51–55 (in Chinese).
|
[69] |
黄唯纯, 颜士玲, 李鑫, 等. 关于声学超构材料名词术语的探讨[J]. 中国材料进展, 2021, 40(1): 1–6, 20-21.HUANG W C, YAN S L, LI X, et al. Discussion on the terminology of acoustic metamaterials[J]. Materials China, 2021, 40(1): 1–6, 20-21 (in Chinese).
|
[70] |
SUN P, ZHANG Z D, GUO H, et al. Topological optimization of hierarchical honeycomb acoustic metamaterials for low-frequency extreme broad band gaps[J]. Applied Acoustics, 2022, 188: 108579. doi: 10.1016/j.apacoust.2021.108579
|
[71] |
许伟龙, 彭伟才, 张俊杰, 等. 声隐身超材料发展综述[J]. 中国舰船研究, 2020, 15(4): 19–27, 35. doi: 10.19693/j.issn.1673-3185.01624XU W L, PENG W C, ZHANG J J, et al. Prospects of acoustic metamaterials for acoustic stealth[J]. Chinese Journal of Ship Research, 2020, 15(4): 19–27, 35 (in Chinese). doi: 10.19693/j.issn.1673-3185.01624
|
[72] |
TANG R J, GU Y B, ABDELKEFI A, et al. Effect of periodic metamaterial structures with different arrangement patterns on the effectiveness of hydroelastic energy harvesters: computational investigation[J]. Ocean Engineering, 2022, 244: 110229. doi: 10.1016/j.oceaneng.2021.110229
|
[73] |
张研, 韩林, 蒋林华, 等. 声子晶体的计算方法与带隙特性[M]. 北京: 科学出版社, 2015.ZHANG Y, HAN L, JIANG L H, et al. Computational methods and band gap properties of phononic crystals[M]. Beijing: Science Press, 2015 (in Chinese).
|
[74] |
沈惠杰, 李雁飞, 苏永生, 等. 舰船管路系统声振控制技术评述与声子晶体减振降噪应用探索[J]. 振动与冲击, 2017, 36(15): 163–170, 209.SHEN H J, LI Y F, SU Y S, et al. Review of sound and vibration control techniques for ship piping systems and exploration of photonic crystals applied in noise and vibration reduction[J]. Journal of Vibration and Shock, 2017, 36(15): 163–170, 209 (in Chinese).
|
[75] |
肖英龙, 支李峰, 茅凯杰, 等. 导管声子晶体结构带隙特性研究[J]. 舰船科学技术, 2021, 43(19): 79–83.XIAO Y L, ZHI L F, MAO K J, et al. Research on band gap characteristics of phononic crystal structure of offshore platform conduit[J]. Ship Science and Technology, 2021, 43(19): 79–83 (in Chinese).
|
[76] |
陈荣. 基于减振器的周期振子动态性能研究[J]. 船舶工程, 2014, 36(增刊1): 70-73, 94.CHEN R. Research on dynamic characteristics of periodic structure based on rubber absorbers[J]. Ship Engineering, 2014, 36(Supp 1): 70-73, 94 (in Chinese).
|
[77] |
喻浩, 陈荣. 周期弹簧振子结构的局域共振带隙和布拉格带隙特征研究[J]. 船舶工程, 2017, 39(5): 41–44.YU H, CHEN R. Study on locally resonance and bragg band gap characteristics of periodic mass spring structure[J]. Ship Engineering, 2017, 39(5): 41–44 (in Chinese).
|
[78] |
RUAN Y D, LIANG X, HUA X Y, et al. Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals[J]. Ocean Engineering, 2021, 225: 108804. doi: 10.1016/j.oceaneng.2021.108804
|
[79] |
李应刚, 周雷, 朱凌, 等. 周期性阻振质量船体板弯曲振动带隙研究[J]. 船舶力学, 2019, 23(11): 1369–1375.LI Y G, ZHOU L, ZHU L, et al. Flexural vibration band gap characteristics of ship plates with periodic vibration blocking masses[J]. Journal of Ship Mechanics, 2019, 23(11): 1369–1375 (in Chinese).
|
[80] |
孙勇敢, 黎胜. 周期性加肋板振动带隙研究[J]. 船舶力学, 2016, 20(增刊1): 142-147.SUN Y G, LI S. Vibration band gap research of periodic stiffened plates[J]. Journal of Ship Mechanics, 2016, 20(Supp 1): 142-147 (in Chinese).
|
[81] |
LI Y G, ZHOU Q W, ZHOU L, et al. Flexural wave band gaps and vibration attenuation characteristics in periodic bi-directionally orthogonal stiffened plates[J]. Ocean Engineering, 2019, 178: 95–103. doi: 10.1016/j.oceaneng.2019.02.076
|
[82] |
秦浩星, 杨德庆. 声子晶体负泊松比蜂窝基座的减振机理研究[J]. 振动工程学报, 2019, 32(3): 421–430.QIN H X, YANG D Q. Vibration reduction mechanism for phononic crystal cellular mount with auxetic effect[J]. Journal of Vibration Engineering, 2019, 32(3): 421–430 (in Chinese).
|
[83] |
徐时吟, 黄修长, 华宏星. 六韧带手性结构的能带特性[J]. 上海交通大学学报, 2013, 47(2): 167–172.XU S Y, HUANG X C, HUA H X. Study on the band structure of hexagonal chiral structures[J]. Journal of Shanghai Jiao Tong University, 2013, 47(2): 167–172 (in Chinese).
|
[84] |
陈斌, 徐时吟. 三韧带手性结构的振动带隙特性[J]. 噪声与振动控制, 2013, 33(4): 75–78. doi: 10.3969/j.issn.1006-1335.2013.04.016CHEN B, XU S Y. Study on the vibration band-gap characteristics of trigonal chiral structures[J]. Noise and Vibration Control, 2013, 33(4): 75–78 (in Chinese). doi: 10.3969/j.issn.1006-1335.2013.04.016
|
[85] |
CHEN D K, ZI H, LI Y G, et al. Low frequency ship vibration isolation using the band gap concept of sandwich plate-type elastic metastructures[J]. Ocean Engineering, 2021, 235: 109460. doi: 10.1016/j.oceaneng.2021.109460
|
[86] |
张若军, 王桂波, 张思维, 等. 四边简支型声子晶体薄板的低频隔声特性验证[J]. 舰船科学技术, 2019, 41(9): 61–64. doi: 10.3404/j.issn.1672-7649.2019.09.012ZHANG R J, WANG G B, ZHANG S W, et al. Analysis of sound transmission through simply supported phononic plate in low frequency[J]. Ship Science and Technology, 2019, 41(9): 61–64 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.09.012
|
[87] |
宋昊, 董天韧, 刘金实. 声子晶体覆盖层吸声机理研究[J]. 舰船科学技术, 2021, 43(12): 99–104. doi: 10.3404/j.issn.1672-7649.2021.12.018SONG H, DONG T R, LIU J S. Research on sound absorption mechanism of phononic crystal coating[J]. Ship Science and Technology, 2021, 43(12): 99–104 (in Chinese). doi: 10.3404/j.issn.1672-7649.2021.12.018
|
[88] |
郭旭, 崔洪宇, 洪明. 局域共振声子晶体板的减振降噪研究[J]. 船舶力学, 2021, 25(4): 509–516.GUO X, CUI H Y, HONG M. Research on vibration and noise reduction of local resonant phononic crystal plate[J]. Journal of Ship Mechanics, 2021, 25(4): 509–516 (in Chinese).
|
[89] |
PEKERIS C L. Theory of propagation of sound in a half-space of variable sound velocity under conditions of formation of a shadow zone[J]. The Journal of the Acoustical Society of America, 1946, 18(2): 295. doi: 10.1121/1.1916366
|
[90] |
MIRONOV M A. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval[J]. Soviet Physics-Acoustics, 1988, 34(3): 318–319.
|
[91] |
刘尊程, 温华兵, 李志远, 等. 声学黑洞浮筏系统的隔振性能分析[C]//第十七届船舶水下噪声学术讨论会论文集. 衢州: 中国造船工程学会, 2019: 355–360.LIU Z C, WEN H B, LI Z Y, et al. Analysis of vibration isolation performance of acoustic black hole floating raft systems[C]//Proceedings of the 17th Symposium on Underwater Noise from Ships. Quzhou: China Shipbuilding Engineering Society, 2019: 355–360 (in Chinese).
|
[92] |
赵楠, 王禹, 陈林, 等. 分布式声学黑洞浮筏系统隔振性能研究[J]. 振动与冲击, 2022, 41(13): 75–80. doi: 10.13465/j.cnki.jvs.2022.13.010ZHAO N, WANG Y, CHEN L, et al. Vibration isolation performance of distributed acoustic black hole floating raft system[J]. Journal of Vibration and Shock, 2022, 41(13): 75–80 (in Chinese). doi: 10.13465/j.cnki.jvs.2022.13.010
|
[93] |
赵业楠, 杨德庆, 王博涵. 声学黑洞俘能器在气垫船舱室噪声控制中的应用研究[J]. 中国造船, 2020, 61(3): 58–67. doi: 10.3969/j.issn.1000-4882.2020.03.006ZHAO Y N, YANG D Q, WANG B H. Application of acoustic black hole energy harvester in noise control of hovercraft cabin[J]. Shipbuilding of China, 2020, 61(3): 58–67 (in Chinese). doi: 10.3969/j.issn.1000-4882.2020.03.006
|
[94] |
李兵, 范军, 王斌, 等. 内嵌声学黑洞的二维无限长圆柱壳散射特性研究[C]//第十八届船舶水下噪声学术讨论会论文集. 无锡: 中国船舶科学研究中心《船舶力学》编辑部, 2021: 442–449.LI B, FAN J, WANG B, et al. Scattering characteristics of two-dimensional infinitely long cylindrical shells with embedded acoustic black holes[C]//Proceedings of the 18th Symposium on Underwater Noise from Ships. Wuxi: Editorial Department of Ship Mechanics, China Ship Scientific Research Center, 2021: 442–449 (in Chinese).
|
[95] |
胡昊灏, 沈琪, 胡东森. 声学黑洞对结构水下声辐射影响分析[C]//中国声学学会2017年全国声学学术会议论文集. 哈尔滨: 中国声学学会, 2017: 95–96.HU H H, SHEN Q, HU D S. Analysis of the effect of acoustic black holes on structural underwater acoustic radiation[C]//Proceedings of the 2017 National Acoustics Conference of the Acoustical Society of China. Harbin: Chinese Society of Acoustics, 2017: 95–96 (in Chinese).
|
[96] |
梅军, 杨旻, 杨志宇, 等. 薄膜型负质量密度声学超常介质[J]. 物理, 2010, 39(4): 243–247.MEI J, YANG M, YANG Z Y, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physics, 2010, 39(4): 243–247 (in Chinese).
|
[97] |
FANG N, XI D J, XU J Y, et al. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006, 5(6): 452–456. doi: 10.1038/nmat1644
|
[98] |
MA G C, YANG M, YANG Z Y, et al. Acoustic double negativity with coupled-membrane metamaterial[J]. Proceedings of Meetings on Acoustics, 2013, 19(1): 065039.
|
[99] |
高东宝. 基于声学超材料的新型隔声技术研究[D]. 长沙: 国防科学技术大学, 2013.GAO D B. New acoustical technology of sound insulation based on acoustic metamaterials[D]. Changsha: National University of Defense Technology, 2013 (in Chinese).
|