Bandgap optimization for chiral acoustic metamaterials based on material selection method
-
摘要:
目的 旨在寻求扩大带隙频率范围,降低带隙起始频率的方法,分析并优化声学超材料的带隙。 方法 分析几何参数与材料参数对声学超材料带隙特性的影响,提出最大化带隙宽度方法。通过归一化带隙参数系数,将多目标优化问题转化为单目标优化问题。基于材料选型优化理论实现组分材料的转换,建立基于轻量化的手性声学超材料带隙参数优化方程。以六韧带手性声学超材料为例,定义散射体、韧带及包覆物等结构设计参数和材料参数为设计变量,开展声学超材料的结构参数−材料选型的综合优化。 结果 优化结果显示,带隙宽度增加了27.7%,下界频率减少了1048 Hz,初步达到了在声学超材料轻量化的基础上扩大带隙频率的目标;开展的有限长手性声学超材料结构的声传输分析验证了带隙优化方法的有效性。 结论 集成了结构参数−材料选型的综合优化可有效达到声学超材料轻量化的目标,研究成果可为新型声学超材料的设计提供技术参考。 Abstract:Objectives This study seeks to expand the bandgap frequency band, reduce the bandgap starting frequency and analyze and optimize the bandgap parameters of acoustic metamaterials. Methods The influence of geometrical and material parameters on the bandgap properties of acoustic metamaterials is analyzed, and a method for maximizing the bandgap width is proposed. The multi-objective optimization problem is converted into a single objective optimization problem by normalizing the bandgap frequency coefficients. Structural material conversion is achieved via the material selection optimization method, and the optimization equations of bandgap parameters are established on the basis of weight-lightening. For chiral acoustic metamaterials, the material properties (density and wave velocity) and geometric parameters (scatterer diameter, ligament thickness and coating thickness) are defined as design variables, and the comprehensive optimization of structural parameters and material selection of acoustic metamaterials based on weight-lightening are implemented. Results The optimization results show that the bandgap width increases by 27.7% and the lower bound frequency decreases by 1048 Hz, thereby achieving the goal of expanding the bandgap width based on lightweight acoustic metamaterials. The acoustic transmission analysis of the finite chiral acoustic metamaterial structure is then carried out to verify the effectiveness of the proposed method. Conclusions The results show that the goal of lightweight acoustic metamaterials can be effectively achieved by integrating the comprehensive optimization of structural parameters and materials. As such, this study provides references for the design of new-type acoustic metamaterials. -
表 1 材料力学特性
Table 1. Mechanical properties of metamaterials
选型材料名称 声速/(m·s−1) 密度/(kg·m−2) 优化前材料 优化后材料 散射体 铅 2 160 11 600 铜 4 726 8 960 铜 钢 5 780 7 850 钢 铝 5 095 2 730 韧带与包覆物 环氧树脂 2 680 1 180 硬橡胶 2 300 1 200 环氧树脂 软橡胶 300 1 300 软橡胶 有机玻璃 1 180 2 680 基体 水 1 480 1 000 水 水 表 2 优化结果对比
Table 2. Comparison of the optimization results
参数 初始设计 优化设计 带隙下界频率/Hz 49 362.5 48 314.2 带隙上界频率/Hz 62 277.1 64 815.4 带隙宽度/Hz 12 914.6 16 501.2 胞元质量/kg 0.008 8 0.006 9 归一化系数Ψ 1.000 00 1.149 73 -
[1] 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13): 68–78. doi: 10.3901/JME.2016.13.068WU J H, MA F Y, ZHANG S W, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13): 68–78 (in Chinese). doi: 10.3901/JME.2016.13.068 [2] 阮居祺, 卢明辉, 陈延峰, 等. 基于弹性力学的超构材料[J]. 中国科学: 技术科学, 2014, 44(12): 1261–1270. doi: 10.1360/092014-102RUAN J Q, LU M H, CHEN Y F, et al. Metamaterial based on elastic mechanics[J]. Scientia Sinica Technologica, 2014, 44(12): 1261–1270 (in Chinese). doi: 10.1360/092014-102 [3] 田源, 葛浩, 卢明辉, 等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850TIAN Y, GE H, LU M H, et al. Research advances in acoustic metamaterials[J]. Acta Physica Sinica, 2019, 68(19): 194301 (in Chinese). doi: 10.7498/aps.68.20190850 [4] 许伟龙, 彭伟才, 张俊杰, 等. 声隐身超材料发展综述[J]. 中国舰船研究, 2020, 15(4): 19–27, 35. doi: 10.19693/j.issn.1673-3185.01624XU W L, PENG W C, ZHANG J J, et al. Prospects of acoustic metamaterials for acoustic stealth[J]. Chinese Journal of Ship Research, 2020, 15(4): 19–27, 35 (in Chinese). doi: 10.19693/j.issn.1673-3185.01624 [5] 张燕妮, 陈克安, 郝夏影, 等. 水声超材料研究进展[J]. 科学通报, 2020, 65(15): 1396–1410. doi: 10.1360/TB-2019-0690ZHANG Y N, CHEN K A, HAO X Y, et al. A review of underwater acoustic metamaterials[J]. Chinese Science Bulletin, 2020, 65(15): 1396–1410 (in Chinese). doi: 10.1360/TB-2019-0690 [6] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734–1736. doi: 10.1126/science.289.5485.1734 [7] BARAVELLI E, RUZZENE M. Internally resonating lattices for bandgap generation and low-frequency vibration control[J]. Journal of Sound and Vibration, 2013, 332(25): 6562–6579. doi: 10.1016/j.jsv.2013.08.014 [8] SAXENA K K, DAS R, CALIUS E P. Three decades of auxetics research-materials with negative Poisson's ratio: a review[J]. Advanced Engineering Materials, 2016, 18(11): 1847–1870. doi: 10.1002/adem.201600053 [9] ZHAI H F, XIANG H, MA X F, et al. Structural parameters optimization of a comb-like structure using locally resonant phononic crystals[J]. Modern Physics Letters B, 2019, 33(26): 1950312. doi: 10.1142/S0217984919503123 [10] SPADONI A, RUZZENE M, GONELLA S, et al. Phononic properties of hexagonal chiral lattices[J]. Wave Motion, 2009, 46(7): 435–450. doi: 10.1016/j.wavemoti.2009.04.002 [11] EBRAHIMI H, MOUSANEZHAD D, NAYEB-HASHEMI H, et al. 3D cellular metamaterials with planar anti-chiral topology[J]. Materials & Design, 2018, 145: 226–231. [12] HU L L, LUO Z R, YIN Q Y. Negative Poisson's ratio effect of re-entrant anti-trichiral honeycombs under large deformation[J]. Thin-Walled Structures, 2019, 141: 283–292. doi: 10.1016/j.tws.2019.04.032 [13] DUDEK K K. New type of rotation of chiral mechanical metamaterials[J]. Smart Materials and Structures, 2020, 29(11): 115027. doi: 10.1088/1361-665X/abaec6 [14] 许卫锴, 宁金英, 韩世超, 等. 考虑材料参数的二维固/固声子晶体拓扑优化设计[J]. 沈阳航空航天大学学报, 2019, 36(5): 10–15.XU W K, NING J Y, HAN S C, et al. Topological optimization design of two-dimensional solid/solid phonon crystals considering material parameters[J]. Journal of Shenyang Aerospace University, 2019, 36(5): 10–15 (in Chinese). [15] XU W K, NING J Y, ZHANG M, et al. Three-phase microstructure topology optimization of two-dimensional phononic bandgap materials using genetic algorithms[J]. Acta Mechanica Solida Sinica, 2018, 31(6): 775–784. doi: 10.1007/s10338-018-0036-4 [16] XIANG H, MA X F, XIANG J W. Optimization for a locally resonant phononic crystal of square spiral with circle inside[J]. IEEE Access, 2019, 17: 145988–145995. [17] LI S B, CHEN T N, WANG X P, et al. Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs[J]. Physics Letters A, 2016, 380(25/26): 2167–2172. doi: 10.1016/j.physleta.2016.03.027 [18] HUANG Y, LIU S T, ZHAO J. A Gradient-based optimization method for the design of layered phononic band-gap materials[J]. Acta Mechanica Solida Sinica, 2016, 29(4): 429–443. doi: 10.1016/S0894-9166(16)30245-2 -
ZG3078_en.pdf
-