留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度方法的复合材料加筋板极限强度分析

张晓端 刘斌 吴卫国 雷加静 魏青

张晓端, 刘斌, 吴卫国, 等. 基于多尺度方法的复合材料加筋板极限强度分析[J]. 中国舰船研究, 2023, 18(2): 64–73 doi: 10.19693/j.issn.1673-3185.03006
引用本文: 张晓端, 刘斌, 吴卫国, 等. 基于多尺度方法的复合材料加筋板极限强度分析[J]. 中国舰船研究, 2023, 18(2): 64–73 doi: 10.19693/j.issn.1673-3185.03006
ZHANG X D, LIU B, WU W G, et al. Ultimate strength analysis of composite stiffened panels based on multi-scale approach[J]. Chinese Journal of Ship Research, 2023, 18(2): 64–73 doi: 10.19693/j.issn.1673-3185.03006
Citation: ZHANG X D, LIU B, WU W G, et al. Ultimate strength analysis of composite stiffened panels based on multi-scale approach[J]. Chinese Journal of Ship Research, 2023, 18(2): 64–73 doi: 10.19693/j.issn.1673-3185.03006

基于多尺度方法的复合材料加筋板极限强度分析

doi: 10.19693/j.issn.1673-3185.03006
基金项目: 国家自然科学基金资助项目(52271326);中央高校基本科研业务费专项资金资助项目(2021III011XZ)
详细信息
    作者简介:

    张晓端,女,2000年生,硕士生。研究方向:船舶与海洋工程结构安全与可靠性。E-mail:a3068926542@126.com

    刘斌,男,1985年生,博士,教授。研究方向:船舶与海洋工程结构安全与可靠性。E-mail:liubin8502@whut.edu.cn

    吴卫国,男,1960年生,硕士,教授。研究方向:船舶与海洋工程结构安全与可靠性。E-mail:mailjt@163.com

    雷加静,男,1984年生,硕士,高级工程师

    魏青,女,1987年生,硕士,工程师

    通信作者:

    刘斌

  • 中图分类号: U661.43;U668.5

Ultimate strength analysis of composite stiffened panels based on multi-scale approach

知识共享许可协议
基于多尺度方法的复合材料加筋板极限强度分析张晓端,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  复合材料内部结构形式多样,深入分析组分材料的损伤机理可为复合材料加筋板的极限强度研究提供基础。  方法  首先,采用多尺度方法,对船用玻璃纤维增强塑料(GFRP)复合材料加筋板进行微观、细观和宏观的力学分析,建立短切毡(CSM)、机织粗纱(WR)材料的微观和细观代表性体积单元(RVE)模型;然后,通过微观和细观RVE模型均匀化,获得宏观等效刚度,并采用ABAQUS软件的子程序VUMAT编写复合材料渐进损伤演化模型,分别得到微观和细观模型的损伤演化机理及宏观单层板等效强度。  结果  结果显示,采用多尺度方法可以很好地评估得到复合材料的宏观力学性能;复合材料加筋板的宏观极限强度主要由纤维束的失效决定。  结论  经多尺度分析得到的宏观材料参数可以用于该材料铺层加筋板的极限强度计算,复合材料的细观力学参数化研究可为材料加工工艺影响研究提供分析手段。
  • 图  T型加筋板结构示意图

    Figure  1.  Layout of the T-stiffened panel

    图  多尺度分析流程图

    Figure  2.  Flow chart of multi-scale analysis

    图  CSM和WR的微观与细观RVE模型以及均匀化图解

    Figure  3.  Microscopic and mesoscopic RVE model of CSM and WR and their homogenization illustration

    图  等效弹性常数计算边界条件

    Figure  4.  Boundary conditions of the calculations of equivalent elastic constants

    图  材料属性退化模型

    Figure  5.  Model of material property degradation

    图  CSM和WR细观尺度轴向拉伸边界条件

    Figure  6.  Boundary conditions for axial tension of CSM and WR in the meso-scale

    图  等效应力−应变曲线及极限点的Mises应力云图

    Figure  7.  Equivalent stress-strain curves and Mises stress contours of limit point

    图  宏观加筋板边界条件

    Figure  8.  Boundary conditions of macro-scale stiffened panel

    图  GFRP复合材料加筋板应力−应变曲线及极限点的Mises应力云图

    Figure  9.  Stress-strain curve and Mises stress contours of limit point for GFRP composite stiffened panels

    图  10  宏观极限强度受细观参数变化的影响程度

    Figure  10.  Effect of meso-scale parameters on the marco-scale ultimate strength

    表  T型加筋板铺层情况

    Table  1.  The laying condition of T-stiffened panel

    铺层情况铺层角度/(°)铺层厚度/mm
    底板CSM/WR/CSM/WR/CSM/WR/CSM/WR/CSM01.250 (CSM),0.979 (WR)
    T型材CSM/WR/WR/WR/WR/CSM/WR/WR/WR/WR/WR/CSM0
    下载: 导出CSV

    表  CSM和WR的微观RVE模型建模参数

    Table  2.  Modeling parameters for microscopic RVE models of CSM and WR

    模型参数CSM纤维束WR纱线
    组成C-玻璃纤维丝、聚酯树脂E-玻璃纤维丝、聚酯树脂
    纤维排列方式定向分布定向分布
    纤维丝直径/μm0.014 50.014 5
    纤维含量0.710.80
    下载: 导出CSV

    表  CSM和WR的细观RVE模型建模参数

    Table  3.  Modeling parameters for mesoscopic RVE models of CSM and WR

    模型参数CSM单层板WR单层板
    纤维排列方式随机分布编织型
    纤维束参数直径0.188 mm纱线宽度1.80 mm,厚度0.15 mm,纱线间距2.00 mm
    纤维含量0.330.50
    下载: 导出CSV

    表  纤维丝和基体材料参数

    Table  4.  Parameters of fiber and matrix material

    材料参数C-玻璃纤维丝E-玻璃纤维丝聚酯树脂基体
    密度/(kg·m−3)2 5202 5801 300
    弹性模量/MPa69 00072 0002 000
    泊松比0.200.220.35
    强度/MPa3 3003 40040
    下载: 导出CSV

    表  CSM和WR的微观和细观等效刚度

    Table  5.  Microscopic and mesoscopic equivalent stiffness of CSM and WR

    参数微观细观
    CSM纤维束WR纱线CSM单层板WR单层板
    E11/MPa34 343.037 257.06 529.514 228.5
    E22/MPa7 434.07 794.06 529.514 228.5
    E33/MPa6 705.07 445.06 529.55 083.0
    G12/MPa3 376.03 376.02 473.32 055.0
    G13/MPa2 915.03 022.02 473.31 511.0
    G23/MPa2 585.02 554.02 473.31 511.0
    V120.250.260.320.12
    V130.260.260.320.38
    V230.420.370.320.38
    下载: 导出CSV

    表  CSM和WR细观和宏观的强度值

    Table  6.  Meso-and macro-scale strength values of CSM and WR

    等效材料参数轴向拉伸应力/MPa轴向压缩应力/MPa横向拉伸应力/MPa横向压缩应力/MPa面内剪切应力/MPa面外剪切应力/MPa
    细观CSM纤维束1 523.01 547.2116.5221.03060.5
    WR纱线1 650.01 685.5211.2236.931.2107.3
    宏观CSM单层板79.0117.579.0117.533.033.0
    WR单层板118.091.5118.091.543.057.0
    下载: 导出CSV

    表  CSM和WR单层板的力学性能

    Table  7.  Mechanical properties of CSM and WR laminates

    力学参数CSM单层板WR单层板
    计算值规范值计算值规范值
    极限拉伸强度/MPa79< 91118< 190
    拉伸模量/MPa6 529.5< 6 950.014 228.5< 14 500.0
    极限压缩强度/MPa117.5< 121.591.5< 147.0
    极限剪切强度/MPa33.0< 64.457.0< 78.0
    剪切模量/MPa2 473.3< 2 801.02 055.0< 3 090.0
    下载: 导出CSV

    表  参数化建模参数

    Table  8.  Parametric modeling parameters

    参数数值
    CSM纤维束含量0.27,0.30,0.33,0.36,0.39
    CSM纤维束直径/mm0.15,0.17,0.19,0.21,0.23
    WR编织角度/(º)35,40,45,50,55
    WR纱线横截面积/mm20.19,0.20,0.21,0.22,0.23
    下载: 导出CSV
  • [1] BROCKENBROUGH J R, SURESH S, WIENECKE H A. Deformation of metal-matrix composites with continu-ous fibers: geometrical effects of fiber distribution and shape[J]. Acta Metallurgica et Materialia, 1991, 39(5): 735–752. doi: 10.1016/0956-7151(91)90274-5
    [2] BROWN H C, LEE H J, CHAMIS C C. Fiber shape effects on metal matrix composite behavior[C]//Internation-al SAMPE Symposium and Exhibition. Anaheim, CA: [s.n.], 1992.
    [3] 吕毅, 吕国志, 吕胜利. 细观力学方法预测单向复合材料的宏观弹性模量[J]. 西北工业大学学报, 2006, 24(6): 787–790. doi: 10.3969/j.issn.1000-2758.2006.06.025

    LÜ Y, LÜ G Z, LÜ S L. Semi-theoretical and engineering prediction of macroscopic elastic moduli of unidirectional composites[J]. Journal of Northwestern Polytechnical University, 2006, 24(6): 787–790 (in Chinese). doi: 10.3969/j.issn.1000-2758.2006.06.025
    [4] ZHANG B M, YANG Z, SUN X Y, et al. A virtual experimental approach to estimate composite mechanical properties: modeling with an explicit finite element method[J]. Computational Materials Science, 2010, 49(3): 645–651. doi: 10.1016/j.commatsci.2010.06.007
    [5] SHEN X L, GONG L D. Numerical modeling of braid-ed composites using energy method[C]//Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal, Canada: American Society of Mechanical Engineers, 2014: 1-6.
    [6] LIU Z, ZHU C, ZHU P. Generation of random fiber distributions for unidirectional fiber-reinforced composites based on particle swarm optimizer[J]. Polymer Composites, 2019, 40(4): 1643–1653. doi: 10.1002/pc.24912
    [7] YU X G, CUI J Z. The prediction on mechanical properties of 4-step braided composites via two-scale method[J]. Composites Science and Technology, 2007, 67(3/4): 471–480.
    [8] LI X, GUAN Z D, LI Z S, et al. A new stress-based multi-scale failure criterion of composites and its validation in open hole tension tests[J]. Chinese Journal of Aero-nautics, 2014, 27(6): 1430–1441. doi: 10.1016/j.cja.2014.10.009
    [9] LIANG B, ZHANG W Z, FENNER J S, et al. Multi-scale modeling of mechanical behavior of cured woven textile composites accounting for the influence of yarn angle variation[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105460. doi: 10.1016/j.compositesa.2019.05.028
    [10] ZHANG Y F, GUO Q W, CHEN X M, et al. Effect of apertures on tensile property of warp-reinforced 2.5D woven composites notched plates[J]. Composite Structures, 2020, 252: 112693. doi: 10.1016/j.compstruct.2020.112693
    [11] 张宪丰. 平纹编织陶瓷基复合材料孔边应力多尺度分析[D]. 南昌: 南昌大学, 2021.

    ZHANG X F. Multi-scale analysis of hole edge stress in plain weave ceramic matrix composites[D]. Nanchang: Nanchang University, 2021 (in Chinese).
    [12] 陈占光. 基于多尺度方法的含孔机织复合材料强度分析研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    CHEN Z G. Strength analysis of woven composites with holes based on multi-scale method[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese).
    [13] 梅志远. 舰船复合材料结构物应用工程技术特点及内涵分析[J]. 中国舰船研究, 2021, 16(2): 1–8. doi: 10.19693/j.issn.1673-3185.02098

    MEI Z Y. Characteristic analysis and prospect of applied engineering technology for composite structures of naval ships[J]. Chinese Journal of Ship Research, 2021, 16(2): 1–8 (in Chinese). doi: 10.19693/j.issn.1673-3185.02098
    [14] 施兴华, 任恒嘉, 许文强, 等. CFRP修复含裂纹加筋板极限强度仿真研究[J]. 中国舰船研究, 2019, 14(4): 47–54. doi: 10.19693/j.issn.1673-3185.01436

    SHI X H, REN H J, XU W Q, et al. Simulation study on ultimate strength of CFRP-reinforced cracked stiffened panels[J]. Chinese Journal of Ship Research, 2019, 14(4): 47–54 (in Chinese). doi: 10.19693/j.issn.1673-3185.01436
    [15] LIOYD'S REGISTER. Rules and regulations for the classification of special service craft[M]. London, U. K: Marine & Shipping, 2020.
    [16] 周琪琛. 二维编织陶瓷基复合材料的多尺度力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    ZHOU Q C. Research on mechanical properties of 2D woven ceramic matrix composites based on multi-scale method[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
    [17] PAN Y, IORGA L, PELEGRI A A. Numerical generation of a random chopped fiber composite RVE and its elastic properties[J]. Composites Science and Technology, 2008, 68(13): 2792–2798. doi: 10.1016/j.compscitech.2008.06.007
    [18] OMAIREY S L, DUNNING P D, SRIRAMULA S. Development of an ABAQUS plugin tool for periodic RVE homogenisation[J]. Engineering with Computers, 2019, 35(2): 567–577. doi: 10.1007/s00366-018-0616-4
    [19] XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8): 1907–1921. doi: 10.1016/S0020-7683(03)00024-6
    [20] ZHOU Y, LU Z X, YANG Z Y. Progressive damage analysis and strength prediction of 2D plain weave composites[J]. Composites Part B:Engineering, 2013, 47: 220–229. doi: 10.1016/j.compositesb.2012.10.026
    [21] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664
    [22] 邵校. 短纤维增强复合材料细观建模与多尺度性能分析[D]. 大连: 大连理工大学, 2020.

    SHAO X. The micro-modeling and multi-scale performance analysis on the short fiber reinforced composites[D]. Dalian: Dalian University of Technology, 2020 (in Chinese).
    [23] 伊鹏跃, 于哲峰, 汪海. 复合材料层压板低速冲击刚度退化仿真方案研究[J]. 力学季刊, 2012, 33(3): 469–475. doi: 10.3969/j.issn.0254-0053.2012.03.018

    YI P Y, YU Z F, WANG H. Stiffness degradation methodology for low-velocity impact simulation in composite laminate[J]. Chinese Quarterly of Mechanics, 2012, 33(3): 469–475 (in Chinese). doi: 10.3969/j.issn.0254-0053.2012.03.018
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  1322
  • HTML全文浏览量:  80
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2022-09-12
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回