Failure mode analysis of composite cylindrical shell structure under underwater explosion
-
摘要:
目的 为提高无人水下航行器(UUV)、自主式水下航行器(AUV)、空气瓶等外壳防护结构的抗爆抗冲击能力,对水下爆炸和高静水压力载荷下碳纤维增强复合材料(CFRP)圆柱壳的结构响应及其失效模式进行研究。 方法 利用ABAQUS软件和耦合欧拉−拉格朗日法(CEL)方法构建在静水压力和冲击载荷共同作用下CFRP圆柱壳内爆的计算模型,通过与实验结果对比来验证数值模拟方法的有效性,并在此基础上获得CFRP圆柱壳内爆的失效模式和参数化影响。 结果 研究发现,CFRP圆柱壳水下内爆可分为3个阶段:屈曲阶段、壁面接触阶段、失效扩展阶段;减小圆柱壳长径比能提高结构的抗冲击能力,且影响CFRP圆柱壳的失效模式;随着纤维层数的增加,壳结构的静水承载能力和抗冲击能力增长速率增加;增加冲击块速度,壳的壁面界接触和失效扩展越显著,发生的基体断裂更多,且裂纹在圆柱壳长度方向上有明显增大趋势。 结论 所做研究可为水下航行器等结构设计工作提供数据指导,推动复合材料在上述领域中的应用。 Abstract:Objective In order to improve the explosion and impact resistance of the protective structures of unmanned underwater vehicles (UUVs), autonomous underwater vehicles (AUVs), air bottles, etc., the structural response and failure modes of carbon fiber reinforced plastic (CFRP) cylindrical shells under underwater explosion and high hydrostatic pressure are investigated. Method A computational model of CFRP cylindrical shell implosion under the combined action of hydrostatic pressure and impact load is established using ABAQUS software and the coupled Euler-Lagrange (CEL) method. The effectiveness of the numerical simulation method is then verified by comparison with the experimental results. On this basis, the failure modes and parametric effects of CFRP cylindrical shell implosion are obtained. Results The underwater implosion of composite cylindrical shells can be divided into three stages: buckling, wall contact and failure propagation. Reducing the length-to-diameter ratio of the CFRP cylindrical shell can improve the impact resistance ability and affect the failure mode of the structure. With the increase in the number of fiber layers, the static water bearing capacity and impact resistance ability of the shell structure increase. With the increase in the impact block velocity, the wall boundary contact and failure propagation of the cylindrical shell become more obvious, matrix fractures occur more frequently and the cracks show an obviously increasing trend in the lengthwise direction of the cylindrical shell. Conclusion The results of this study can provide data guidance for the structural design of underwater vehicles and promote the application of composite materials in the field. -
Key words:
- cylindrical shell structure /
- underwater explosion /
- failure mode /
- numerical simulation
-
表 1 水介质材料参数
Table 1. Water material parameters
参数 数值 密度$/({\rm{g} }\cdot {\rm{c}\rm{m} }^{-3})$ 1 $ C_{0}/(\rm{m}\rm{m}\cdot {\rm{s}}^{-1}) $ 1 480 000 $ S $ 0 $ {{\varGamma }}_{0} $ 0 $ \mu /(\rm{P}\rm{a}\cdot \rm{s}) $ 1.0×10−3 表 2 空气介质材料参数
Table 2. Air material parameters
参数 数值 密度$/(\mathrm{g}\cdot {\mathrm{c}\mathrm{m} }^{-3})$ $ 1.293\times {10}^{-3} $ 气体常数 287 000 000 环境压力/MPa 0.101 3 $ \mu /(\mathrm{P}\mathrm{a}\cdot \mathrm{s}) $ $ 8.25\times {10}^{-5} $ 参数 数值 密度$/(\mathrm{g}\cdot {\mathrm{c}\mathrm{m} }^{-3})$ 4 杨氏模量E1$ / $GPa 42.7 杨氏模量E2$ / $GPa 42.7 剪切模量$ / $GPa 4.4 泊松比${\nu }_{1}$ 0.05 泊松比${\nu }_{2}$ 0.05 表 4 圆柱壳纤维层数的参数设置
Table 4. Parameter setting with different fiber layers of cylindrical shell
纤维层数 长度L/mm 直径D/mm 厚度/mm 临界静水压力PCO/MPa 冲击块速度v0/(m·s−1) 4 292 36.5 1.00 1.5 10 3 292 36.5 0.75 1.2 10 2 292 36.5 0.50 1.0 10 -
[1] PINTO M, SHUKLA A. Mitigation of pressure pulses from implosion of hollow composite cylinders[J]. Journal of Composite Materials, 2015, 50(26): 3709–3718. [2] GUPTA S, MATOS H, LEBLANC J M, et al. Shock initiated instabilities in underwater cylindrical structures[J]. Journal of the Mechanics and Physics of Solids, 2016, 95: 188–212. doi: 10.1016/j.jmps.2016.05.034 [3] 纪冲, 徐全军, 万文乾, 等. 钢质圆柱壳在侧向爆炸荷载下的动力响应[J]. 爆炸与冲击, 2014, 34(2): 137–144.JI C, XU Q J, WAN W Q, et al. Dynamic responses of steel cylindrical shells under lateral explosion loading[J]. Explosion and Shock Waves, 2014, 34(2): 137–144 (in Chinese). [4] SUN W F, ZHU T T, CHEN P W, et al. Dynamic implosion of submerged cylindrical shell under the combined hydrostatic and shock loading[J]. Thin-Walled Structures, 2022, 170: 108574. doi: 10.1016/j.tws.2021.108574 [5] PINTO M, GUPTA S, SHUKLA A. Study of implosion of carbon/epoxy composite hollow cylinders using 3-D digital image correlation[J]. Composite Structures, 2015, 119: 272–286. doi: 10.1016/j.compstruct.2014.08.040 [6] PINTO M, SHUKLA A. Experimental investigation of free-field implosion of filament wound composite tubes[M]//TANDON G. Composite, hybrid, and multifunctional materials. Cham: Springer, 2015: 109-115. [7] MOON C J, KIM I H, CHOI B H, et al. Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications[J]. Composite Structures, 2010, 92(9): 2241–2251. doi: 10.1016/j.compstruct.2009.08.005 [8] TRAN P, WU C L, SALEH M, et al. Composite structures subjected to underwater explosive loadings: a comprehensive review[J]. Composite Structures, 2021, 263: 113684. doi: 10.1016/j.compstruct.2021.113684 [9] 张亭亭. 水下接触爆炸作用下舰船舷侧结构及设备防护特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.ZHANG T T. Research on ship side structure and equip-ment protection characteristics under underwater contact explosion[D]. Harbin: Harbin Engineering University, 2017(in Chinese). [10] 周昊, 郭锐, 刘荣忠, 等. 碳纤维增强聚合物复合材料方形蜂窝夹层结构水下爆炸动态响应数值模拟[J]. 复合材料学报, 2019, 36(5): 1226–1234.ZHOU H, GUO R, LIU R Z, et al. Simulations on dynamic responses of carbon fiber reinforced polymer composite sandwich plates with square honeycomb cores subjected to water blast[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1226–1234 (in Chinese). [11] FARHAT C, WANG K G, MAIN A, et al. Dynamic implosion of underwater cylindrical shells: experiments and computations[J]. International Journal of Solids and Structures, 2013, 50(19): 2943–2961. doi: 10.1016/j.ijsolstr.2013.05.006 [12] ULLAH I, BRANDT M, FEIH S. Failure and energy absorption characteristics of advanced 3D truss core structures[J]. Materials & Design, 2016, 92: 937–948. [13] 牟金磊, 朱锡. 舰船抗爆领域水下爆炸载荷研究进展[J]. 中国舰船研究, 2010, 5(2): 1–8. doi: 10.3969/j.issn.1673-3185.2010.02.001MU J L, ZHU X. Research progress on the underwater explosive load for warship shock resistance[J]. Chinese Journal of Ship Research, 2010, 5(2): 1–8 (in Chinese). doi: 10.3969/j.issn.1673-3185.2010.02.001 [14] 任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.REN P. Research on non-powder underwater shock wave loading technology and impact resistance characteristics of aluminum alloy structure [D]. Harbin Institute of Technology, 2014(in Chinese). [15] 黄治新. 轻质薄壁梁弯曲力学行为与吸能特性研究[D]. 武汉: 华中科技大学, 2020.HUANG Z X. Research on bending mechanical behavior and energy absorption characteristics of light thin-walled beams [D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese). -