留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同泊松比蜂窝结构抗冲击性能数值分析

宫晓博 刘宇鸿 于昌利 桂洪斌

宫晓博, 刘宇鸿, 于昌利, 等. 不同泊松比蜂窝结构抗冲击性能数值分析[J]. 中国舰船研究, 2023, 18(2): 38–47 doi: 10.19693/j.issn.1673-3185.02744
引用本文: 宫晓博, 刘宇鸿, 于昌利, 等. 不同泊松比蜂窝结构抗冲击性能数值分析[J]. 中国舰船研究, 2023, 18(2): 38–47 doi: 10.19693/j.issn.1673-3185.02744
GONG X B, LIU Y H, YU C L, et al. Numerical analysis of impact resistance of honeycomb structures with different Poisson's ratios[J]. Chinese Journal of Ship Research, 2023, 18(2): 38–47 doi: 10.19693/j.issn.1673-3185.02744
Citation: GONG X B, LIU Y H, YU C L, et al. Numerical analysis of impact resistance of honeycomb structures with different Poisson's ratios[J]. Chinese Journal of Ship Research, 2023, 18(2): 38–47 doi: 10.19693/j.issn.1673-3185.02744

不同泊松比蜂窝结构抗冲击性能数值分析

doi: 10.19693/j.issn.1673-3185.02744
基金项目: 国家自然科学基金资助项目(11902100,11902099);山东省自然科学基金资助项目(ZR2019PA001);山东省重点研发计划资助项目(2019GHZ011,2021CXGC010702)
详细信息
    作者简介:

    宫晓博,男,1989年生,博士,讲师。研究方向:智能结构设计及其在船海方面的应用。E-mail:xiaobogong@hit.edu.cn

    刘宇鸿,男,1997年生,硕士生。研究方向:蜂窝结构抗冲击性能研究

    于昌利,男,1981年生,博士,副教授。研究方向:水下智能装备。E-mail:yuchangli@hitwh.edu.cn

    桂洪斌,男,1967年生,博士,教授。研究方向:船舶结构力学。E-mail:guihongbin@sina.com

    通信作者:

    桂洪斌

  • 中图分类号: U661.4;U668.5

Numerical analysis of impact resistance of honeycomb structures with different Poisson's ratios

知识共享许可协议
不同泊松比蜂窝结构抗冲击性能数值分析宫晓博,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  对不同泊松比蜂窝结构的抗冲击性能进行分析。  方法  基于显式动力有限元方法,分析不同泊松比蜂窝结构在面内冲击载荷作用下的动态力学性能,探究蜂窝结构泊松比对其抗冲击性能的影响规律。选取3类具有负/零/正泊松比的典型蜂窝拓扑结构(内凹六边形、六边形和半内凹六边形),通过改变几何参数使其具有相同的相对密度和不同的泊松比(−2.76 ~3.63),分析结构在低/中/高速动态位移载荷作用下的动态力学性能。  结果  结果显示:零泊松比半内凹六边形蜂窝在压缩变形时不产生横向变形,具有最好的结构稳定性;在不发生结构失稳的前提下,平台应力与泊松比的关联不大;致密应变会随泊松比绝对值的增大而增大;单位体积能量吸收EA随泊松比绝对值的增大而增大。在进行蜂窝结构设计时,如果需要平台应力较大(抵抗变形能力强)的结构,可以选择壁厚/壁长(t/l)较大、胞元倾斜角θ较小的负泊松比内凹六边形蜂窝结构;如果需要较强的EA,可以选择t/lθ均较小的正泊松比六边形蜂窝结构;如果需要结构有很好的稳定性,可以采用零泊松比半内凹六边形蜂窝结构。  结论  所做研究可为舷侧抗冲击蜂窝结构的选型和几何参数设计提供参考。
  • 图  几何参数不同时的蜂窝结构泊松比

    Figure  1.  Poisson's ratios of honeycomb structure with different geometric parameters

    图  3类蜂窝结构有限元模型

    Figure  2.  Finite element model of three types of honeycomb structure

    图  蜂窝结构压缩实验结果与数值模拟结果的对比

    Figure  3.  Comparisons between compression experiment results and simulation results of honeycomb structure

    图  实验与模拟结果的应力−应变曲线对比

    Figure  4.  Stress-strain curves comparison between experimental and simulation results

    图  不同泊松比蜂窝结构的3种变形模式

    Figure  5.  Three types of deformation modes of honeycomb structure with different Poisson's ratios

    图  负泊松比蜂窝结构的失稳过程和2种失稳形式

    Figure  6.  Instability process and two instability modes of negative Poisson's ratio honeycomb structure

    图  不同冲击载荷下3类蜂窝结构的应力−应变曲线

    Figure  7.  Stress-strain curves of three types of honeycomb structure under different impact loads

    图  不同泊松比蜂窝结构的平台应力曲线

    Figure  8.  Plateau stress curves of honeycomb structure with different Poisson's ratios

    图  不同泊松比蜂窝结构的致密应变曲线

    Figure  9.  Densified strain curves of honeycomb structure with different Poisson's ratios

    图  10  不同冲击载荷下蜂窝结构的EA

    Figure  10.  EA of honeycomb structure under different impact loads

    图  11  10 m/s冲击速度下3类蜂窝结构的EA

    Figure  11.  EA of three types of honeycomb structure at 10 m/s of impact velocity

    图  12  50 m/s冲击速度下3类蜂窝结构的EA

    Figure  12.  EA of three types of honeycomb structure at 50 m/s of impact velocity

    图  13  100 m/s冲击速度下3类蜂窝结构的EA

    Figure  13.  EA of three types of honeycomb structure at 100 m/s of impact velocity

    表  3类不同泊松比蜂窝结构的型式及相应的泊松比表达式

    Table  1.  Three types of different Poisson's ratio honeycomb structure and corresponding Poisson's ratio expression

    蜂窝类型泊松比公式
    六边形蜂窝$\nu = \dfrac{{{{\cos }^2}\theta }}{{(h/l + \sin \theta )\sin \theta }}$
    内凹六边形蜂窝$\nu = - \dfrac{{{{\cos }^2}\theta }}{{(h{\text{/}}l - \sin \theta )\sin \theta }}$
    半内凹六边形蜂窝ν = 0
    下载: 导出CSV

    表  不同几何蜂窝结构在3种冲击载荷作用下的变形模式

    Table  2.  Deformation modes of different geometrical honeycomb structures under three impact loads

    t/lθ/(°)六边形蜂窝内凹六边形蜂窝半内凹六边形蜂窝
    V = 10 m/sV = 50 m/sV = 100 m/sV = 10 m/sV = 50 m/sV = 100 m/sV = 10 m/sV = 50 m/sV = 100 m/s
    0.0415123XXX133
    20123X22133
    25123X23333
    30233X33333
    0.0515123X2X133
    20123123333
    25233133333
    30233233333
    0.0615123XX2133
    20233133333
    25233233333
    303X3333333
    0.07152X3XX3333
    20233133333
    25233X33333
    30333333333
    下载: 导出CSV

    表  不同几何蜂窝结构在3种冲击载荷作用下的平台应力

    Table  3.  Plateau stress of different geometrical honeycomb structures under three impact loads

    t/lθ(°)平台应力/MPa
    六边形蜂窝内凹六边形蜂窝半内凹六边形蜂窝
    V = 10 m/sV = 50 m/sV = 100 m/sV = 10 m/sV = 50 m/sV = 100 m/sV = 10 m/sV = 50 m/sV = 100 m/s
    0.04151.604.626.121.634.495.991.474.495.99
    201.324.305.821.384.225.761.134.115.63
    251.244.255.681.244.175.621.104.065.49
    301.104.085.531.144.065.521.054.015.46
    0.05151.664.636.101.764.736.201.614.646.11
    201.454.415.951.534.385.891.354.315.85
    251.304.305.721.254.255.671.314.315.73
    301.134.125.611.154.115.641.114.025.53
    0.06151.784.786.301.814.716.221.674.586.14
    201.554.546.101.554.566.121.444.435.91
    251.334.335.811.284.285.771.324.265.76
    301.174.135.621.184.275.771.254.325.82
    0.07151.814.806.321.864.806.301.834.826.32
    201.564.566.061.584.576.071.604.786.26
    251.384.355.841.454.425.911.424.575.92
    301.224.225.651.264.335.671.394.465.85
    下载: 导出CSV

    表  不同几何蜂窝结构在3种冲击载荷作用下的致密应变

    Table  4.  Densified strain ofdifferent geometrical honeycomb structures under three impact loads

    t/lθ/(°)致密应变/%
    六边形蜂窝内凹六边形蜂窝半内凹六边形蜂窝
    V = 10 m/sV = 50 m/sV = 100 m/sV = 10 m/sV = 50 m/sV = 100 m/sV = 10 m/sV = 50 m/sV = 100 m/s
    0.041588.393.295.680.284.688.185.287.192.2
    2086.292.195.379.889.894.183.485.790.9
    2584.891.494.779.290.494.483.084.890.0
    3084.290.393.478.986.090.080.382.587.5
    0.051586.692.595.679.590.188.584.386.391.3
    2085.791.895.079.289.493.482.785.089.7
    2585.190.593.186.788.792.882.484.489.4
    3084.190.193.484.686.690.981.483.188.2
    0.061586.592.695.678.384.193.483.985.990.9
    2086.492.795.086.288.292.282.184.089.1
    2584.990.193.184.086.090.081.283.188.1
    3081.087.293.481.283.287.880.582.587.5
    0.071585.388.395.078.080.592.582.484.589.4
    2084.391.794.782.984.988.882.183.989.1
    2583.191.293.177.683.787.879.981.686.9
    3082.789.792.879.981.986.378.780.185.9
    下载: 导出CSV
  • [1] NIA A A, MOKARI S, ZAKIZADEH M, et al. Experimental and numerical investigations of the effect of cellular wired core on the ballistic resistance of sandwich structures[J]. Aerospace Science and Technology, 2017, 70: 445–452. doi: 10.1016/j.ast.2017.08.015
    [2] ZHOU J, LIU J, ZHANG X, et al. Experimental and numerical investigation of high velocity soft impact loading on aircraft materials[J]. Aerospace Science and Technology, 2019, 90: 44–58. doi: 10.1016/j.ast.2019.04.015
    [3] WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering, 2019, 166: 731–741. doi: 10.1016/j.compositesb.2019.02.011
    [4] WANG Z G, LI Z D, SHI C, et al. Theoretical and numerical analysis of the folding mechanism of vertex-based hierarchical honeycomb structure[J]. Mechanics of Advanced Materials and Structures, 2020, 27(10): 789–799. doi: 10.1080/15376494.2019.1665760
    [5] 张相闻. 船舶宏观负泊松比效应蜂窝减振及防护结构设计方法研究[D]. 上海: 上海交通大学, 2017.

    ZHANG X W. Research on design methods of auxetic cellular structures for vibration reduction and defensive structures of ships[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese).
    [6] 陈杨科, 何书韬, 刘均, 等. 金属夹层结构的舰船应用研究综述[J]. 中国舰船研究, 2013, 8(6): 6–13. doi: 10.3969/j.issn.1673-3185.2013.06.002

    CHEN Y K, HE S T, LIU J, et al. Application and prospect of steel sandwich panels in warships[J]. Chinese Journal of Ship Research, 2013, 8(6): 6–13 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.06.002
    [7] 赵著杰, 侯海量, 李典. 填充多胞元抗冲击防护结构动力学特性及防护性能研究进展[J]. 中国舰船研究, 2021, 16(3): 96–111. doi: 10.19693/j.issn.1673-3185.02053

    ZHAO Z J. HOU H L, LI D. Research progress on dynamic characteristics and protective performance of multicellular filled impact resistant protective structure[J]. Chinese Journal of Ship Research, 2021, 16(3): 96–111 (in Chinese). doi: 10.19693/j.issn.1673-3185.02053
    [8] LIU J F, CHEN W S, HAO H, et al. In-plane crushing behaviors of hexagonal honeycombs with different Poisson's ratio induced by topological diversity[J]. Thin-Walled Structures, 2021, 159: 107223. doi: 10.1016/j.tws.2020.107223
    [9] GIBSON L J, ASHBY M F. Cellular solids: structure and properties[M]. Oxford: Pergamon Press, 1988.
    [10] HUANG J, GONG X B, ZHANG Q H, et al. In-plane mechanics of a novel zero Poisson's ratio honeycomb core[J]. Composites Part B: Engineering, 2016, 89: 67–76. doi: 10.1016/j.compositesb.2015.11.032
    [11] SCARPA F, TOMLIN P J. On the transverse shear modulus of negative Poisson's ratio honeycomb structures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(8): 717–720.
    [12] SCHULTZ J, GRIESE D, JU J, et al. Design of honeycomb mesostructures for crushing energy absorption[J]. Journal of Mechanical Design, 2012, 134(7): 071004. doi: 10.1115/1.4006739
    [13] ZHU F, ZHAO L M, LU G X, et al. Deformation and failure of blast-loaded metallic sandwich panels-experimental investigations[J]. International Journal of Impact Engineering, 2008, 35(8): 937–951. doi: 10.1016/j.ijimpeng.2007.11.003
    [14] HABIB F N, IOVENITTI P, MASOOD S H, et al. In-plane energy absorption evaluation of 3D printed polymeric honeycombs[J]. Virtual and Physical Prototyping, 2017, 12(2): 117–131. doi: 10.1080/17452759.2017.1291354
    [15] FOO C C, CHAI G B, SEAH L K. Quasi-static and low-velocity impact failure of aluminium honeycomb sandwich panels[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2006, 220(2): 53–66. doi: 10.1243/14644207JMDA98
    [16] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs—a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161–182. doi: 10.1016/S0734-743X(02)00056-8
    [17] HU L L, ZHOU M Z, DENG H. Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation[J]. Composite Structures, 2019, 207: 323–330. doi: 10.1016/j.compstruct.2018.09.066
    [18] 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能[J]. 爆炸与冲击, 2012, 32(5): 475–482. doi: 10.3969/j.issn.1001-1455.2012.05.005

    ZHANG X C, LIU Y, LI N. In-plane dynamic crushing of honeycombs with negative Poisson's ratio effects[J]. Explosion and Shock Waves, 2012, 32(5): 475–482 (in Chinese). doi: 10.3969/j.issn.1001-1455.2012.05.005
    [19] GRIMA J N, OLIVERI L, ATTARD D, et al. Hexagonal honeycombs with zero poisson's ratios and enhanced stiffness[J]. Advanced Engineering Materials, 2010, 12(9): 855–862. doi: 10.1002/adem.201000140
    [20] 陈鹏, 侯秀慧, 张凯. 面内冲击荷载下半凹角蜂窝的抗冲击特性[J]. 高压物理学报, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759

    CHEN P, HOU X H, ZHANG K. Impact resistance of semi re-entrant honeycombs under in-plane dynamic crushing[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064104 (in Chinese). doi: 10.11858/gywlxb.20190759
    [21] RAHMAN O, KOOHBOR B. Optimization of energy absorption performance of polymer honeycombs by density gradation[J]. Composites Part C: Open Access, 2020, 3: 100052. doi: 10.1016/j.jcomc.2020.100052
    [22] ZHANG X C, AN L Q, DING H M, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio[J]. Journal of Sandwich Structures & Materials, 2015, 17(1): 26–55.
    [23] HÖNIG A, STRONGE W J. In-plane dynamic crushing of honeycomb. part I: crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences, 2002, 44(8): 1665–1696. doi: 10.1016/S0020-7403(02)00060-7
    [24] LUO Y, YUAN K, SHEN L M, et al. Sandwich panel with in-plane honeycombs in different Poisson's ratio under low to medium impact loads[J]. Reviews on Advanced Materials Science, 2021, 60(1): 145–157. doi: 10.1515/rams-2021-0020
    [25] 丁圆圆, 郑志军, 王士龙, 等. 多孔材料吸能行为对相对密度和冲击速度的依赖性[J]. 固体力学学报, 2018, 39(6): 578–586.

    DING Y Y, ZHENG Z J, WANG S L, et al. The dependence of energy absorption behavior of cellular materials on relative density and impact velocity[J]. Chinese Journal of Solid Mechanics, 2018, 39(6): 578–586 (in Chinese).
    [26] 魏刚, 张伟, 邓云飞. 基于J-C模型的45钢本构参数识别及验证[J]. 振动与冲击, 2019, 38(5): 173–178. doi: 10.13465/j.cnki.jvs.2019.05.025

    WEI G, ZHANG W, DENG Y F. Identification and validation of constitutive parameters of 45 Steel based on J-C model[J]. Journal of Vibration and Shock, 2019, 38(5): 173–178 (in Chinese). doi: 10.13465/j.cnki.jvs.2019.05.025
    [27] HU L L, YOU F F, YU T X. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs[J]. Materials & Design, 2013, 46: 511–523.
    [28] WANG Z G, LI Z D, ZHOU W, et al. On the influence of structural defects for honeycomb structure[J]. Composites Part B: Engineering, 2018, 142: 183–192. doi: 10.1016/j.compositesb.2018.01.015
    [29] JIN T, ZHOU Z W, WANG Z H, et al. Experimental study on the effects of specimen in-plane size on the mechanical behavior of aluminum hexagonal honeycombs[J]. Materials Science and Engineering: A, 2015, 635: 23–35. doi: 10.1016/j.msea.2015.03.053
    [30] 胡玲玲, 余同希. 惯性效应对蜂窝能量吸收性能的影响[J]. 兵工学报, 2009, 38(增刊 2): 24–27.

    HU L L, YU T X. Influence of inertia effect on the energy absorption of hexagonal honeycombs[J]. Acta Armamentarii, 2009, 38(Supp 2): 24–27 (in Chinese).
    [31] HU L L, YU T X. Dynamic crushing strength of hexagonal honeycombs[J]. International Journal of Impact Engineering, 2010, 37(5): 467–474. doi: 10.1016/j.ijimpeng.2009.12.001
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  1542
  • HTML全文浏览量:  79
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-03-23
  • 网络出版日期:  2022-09-07
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回