Numerical analysis of impact resistance of honeycomb structures with different Poisson's ratios
-
摘要:
目的 对不同泊松比蜂窝结构的抗冲击性能进行分析。 方法 基于显式动力有限元方法,分析不同泊松比蜂窝结构在面内冲击载荷作用下的动态力学性能,探究蜂窝结构泊松比对其抗冲击性能的影响规律。选取3类具有负/零/正泊松比的典型蜂窝拓扑结构(内凹六边形、六边形和半内凹六边形),通过改变几何参数使其具有相同的相对密度和不同的泊松比(−2.76 ~3.63),分析结构在低/中/高速动态位移载荷作用下的动态力学性能。 结果 结果显示:零泊松比半内凹六边形蜂窝在压缩变形时不产生横向变形,具有最好的结构稳定性;在不发生结构失稳的前提下,平台应力与泊松比的关联不大;致密应变会随泊松比绝对值的增大而增大;单位体积能量吸收EA随泊松比绝对值的增大而增大。在进行蜂窝结构设计时,如果需要平台应力较大(抵抗变形能力强)的结构,可以选择壁厚/壁长(t/l)较大、胞元倾斜角θ较小的负泊松比内凹六边形蜂窝结构;如果需要较强的EA,可以选择t/l和θ均较小的正泊松比六边形蜂窝结构;如果需要结构有很好的稳定性,可以采用零泊松比半内凹六边形蜂窝结构。 结论 所做研究可为舷侧抗冲击蜂窝结构的选型和几何参数设计提供参考。 Abstract:Objectives This papers aims to analyze the impact resistance of honeycomb structure with different Poisson's ratio. Methods Based on the explicit dynamic finite element method, this paper analyzes the dynamic mechanical properties of honeycomb structures with different Poisson's ratios under in-plane impact load, and explores the influence laws of Poisson's ratios on their impact resistance. Three typical honeycomb structures with negative/zero/positive Poisson's ratios (reentrant hexagon, hexagon and semi-reentrant hexagon) are selected, their geometric parameters are changed to give them the same relative density and different Poisson's ratios (−2.76 – +3.63), and their dynamic mechanical properties under low/medium/high-speed dynamic displacement loads are analyzed. Results The results show that the zero Poisson's ratio semi-reentrant honeycomb structure has the best structural stability without transverse deformation under compression deformation; without structural instability, the platform stress has little correlation with the Poisson's ratio; and the compact strain and total energy absorbtion increases with the absolute value of the Poisson's ratio. Negative Poisson's ratio honeycomb structures with large t/l and small θ are suitable for applications with high platform stress (strong deformation resistance), and negative Poisson's ratio honeycomb structures with small t/l and small θ are suitable for high total energy absorbtion applications, while zero Poisson's ratio semi-reentrant honeycomb structures are suitable for applications with high platform stress (strong deformation resistance). Conclusions This study can provide references for the type selection and geometric parameter design of side impact honeycomb structures . -
Key words:
- honeycomb structure /
- numerical simulation /
- energy absorbtion /
- impact load /
- Poisson's ratio
-
表 1 3类不同泊松比蜂窝结构的型式及相应的泊松比表达式
Table 1. Three types of different Poisson's ratio honeycomb structure and corresponding Poisson's ratio expression
蜂窝类型 泊松比公式 六边形蜂窝 $\nu = \dfrac{{{{\cos }^2}\theta }}{{(h/l + \sin \theta )\sin \theta }}$ 内凹六边形蜂窝 $\nu = - \dfrac{{{{\cos }^2}\theta }}{{(h{\text{/}}l - \sin \theta )\sin \theta }}$ 半内凹六边形蜂窝 ν = 0 表 2 不同几何蜂窝结构在3种冲击载荷作用下的变形模式
Table 2. Deformation modes of different geometrical honeycomb structures under three impact loads
t/l θ/(°) 六边形蜂窝 内凹六边形蜂窝 半内凹六边形蜂窝 V = 10 m/s V = 50 m/s V = 100 m/s V = 10 m/s V = 50 m/s V = 100 m/s V = 10 m/s V = 50 m/s V = 100 m/s 0.04 15 1 2 3 X X X 1 3 3 20 1 2 3 X 2 2 1 3 3 25 1 2 3 X 2 3 3 3 3 30 2 3 3 X 3 3 3 3 3 0.05 15 1 2 3 X 2 X 1 3 3 20 1 2 3 1 2 3 3 3 3 25 2 3 3 1 3 3 3 3 3 30 2 3 3 2 3 3 3 3 3 0.06 15 1 2 3 X X 2 1 3 3 20 2 3 3 1 3 3 3 3 3 25 2 3 3 2 3 3 3 3 3 30 3 X 3 3 3 3 3 3 3 0.07 15 2 X 3 X X 3 3 3 3 20 2 3 3 1 3 3 3 3 3 25 2 3 3 X 3 3 3 3 3 30 3 3 3 3 3 3 3 3 3 表 3 不同几何蜂窝结构在3种冲击载荷作用下的平台应力
Table 3. Plateau stress of different geometrical honeycomb structures under three impact loads
t/l θ(°) 平台应力/MPa 六边形蜂窝 内凹六边形蜂窝 半内凹六边形蜂窝 V = 10 m/s V = 50 m/s V = 100 m/s V = 10 m/s V = 50 m/s V = 100 m/s V = 10 m/s V = 50 m/s V = 100 m/s 0.04 15 1.60 4.62 6.12 1.63 4.49 5.99 1.47 4.49 5.99 20 1.32 4.30 5.82 1.38 4.22 5.76 1.13 4.11 5.63 25 1.24 4.25 5.68 1.24 4.17 5.62 1.10 4.06 5.49 30 1.10 4.08 5.53 1.14 4.06 5.52 1.05 4.01 5.46 0.05 15 1.66 4.63 6.10 1.76 4.73 6.20 1.61 4.64 6.11 20 1.45 4.41 5.95 1.53 4.38 5.89 1.35 4.31 5.85 25 1.30 4.30 5.72 1.25 4.25 5.67 1.31 4.31 5.73 30 1.13 4.12 5.61 1.15 4.11 5.64 1.11 4.02 5.53 0.06 15 1.78 4.78 6.30 1.81 4.71 6.22 1.67 4.58 6.14 20 1.55 4.54 6.10 1.55 4.56 6.12 1.44 4.43 5.91 25 1.33 4.33 5.81 1.28 4.28 5.77 1.32 4.26 5.76 30 1.17 4.13 5.62 1.18 4.27 5.77 1.25 4.32 5.82 0.07 15 1.81 4.80 6.32 1.86 4.80 6.30 1.83 4.82 6.32 20 1.56 4.56 6.06 1.58 4.57 6.07 1.60 4.78 6.26 25 1.38 4.35 5.84 1.45 4.42 5.91 1.42 4.57 5.92 30 1.22 4.22 5.65 1.26 4.33 5.67 1.39 4.46 5.85 表 4 不同几何蜂窝结构在3种冲击载荷作用下的致密应变
Table 4. Densified strain ofdifferent geometrical honeycomb structures under three impact loads
t/l θ/(°) 致密应变/% 六边形蜂窝 内凹六边形蜂窝 半内凹六边形蜂窝 V = 10 m/s V = 50 m/s V = 100 m/s V = 10 m/s V = 50 m/s V = 100 m/s V = 10 m/s V = 50 m/s V = 100 m/s 0.04 15 88.3 93.2 95.6 80.2 84.6 88.1 85.2 87.1 92.2 20 86.2 92.1 95.3 79.8 89.8 94.1 83.4 85.7 90.9 25 84.8 91.4 94.7 79.2 90.4 94.4 83.0 84.8 90.0 30 84.2 90.3 93.4 78.9 86.0 90.0 80.3 82.5 87.5 0.05 15 86.6 92.5 95.6 79.5 90.1 88.5 84.3 86.3 91.3 20 85.7 91.8 95.0 79.2 89.4 93.4 82.7 85.0 89.7 25 85.1 90.5 93.1 86.7 88.7 92.8 82.4 84.4 89.4 30 84.1 90.1 93.4 84.6 86.6 90.9 81.4 83.1 88.2 0.06 15 86.5 92.6 95.6 78.3 84.1 93.4 83.9 85.9 90.9 20 86.4 92.7 95.0 86.2 88.2 92.2 82.1 84.0 89.1 25 84.9 90.1 93.1 84.0 86.0 90.0 81.2 83.1 88.1 30 81.0 87.2 93.4 81.2 83.2 87.8 80.5 82.5 87.5 0.07 15 85.3 88.3 95.0 78.0 80.5 92.5 82.4 84.5 89.4 20 84.3 91.7 94.7 82.9 84.9 88.8 82.1 83.9 89.1 25 83.1 91.2 93.1 77.6 83.7 87.8 79.9 81.6 86.9 30 82.7 89.7 92.8 79.9 81.9 86.3 78.7 80.1 85.9 -
[1] NIA A A, MOKARI S, ZAKIZADEH M, et al. Experimental and numerical investigations of the effect of cellular wired core on the ballistic resistance of sandwich structures[J]. Aerospace Science and Technology, 2017, 70: 445–452. doi: 10.1016/j.ast.2017.08.015 [2] ZHOU J, LIU J, ZHANG X, et al. Experimental and numerical investigation of high velocity soft impact loading on aircraft materials[J]. Aerospace Science and Technology, 2019, 90: 44–58. doi: 10.1016/j.ast.2019.04.015 [3] WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering, 2019, 166: 731–741. doi: 10.1016/j.compositesb.2019.02.011 [4] WANG Z G, LI Z D, SHI C, et al. Theoretical and numerical analysis of the folding mechanism of vertex-based hierarchical honeycomb structure[J]. Mechanics of Advanced Materials and Structures, 2020, 27(10): 789–799. doi: 10.1080/15376494.2019.1665760 [5] 张相闻. 船舶宏观负泊松比效应蜂窝减振及防护结构设计方法研究[D]. 上海: 上海交通大学, 2017.ZHANG X W. Research on design methods of auxetic cellular structures for vibration reduction and defensive structures of ships[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese). [6] 陈杨科, 何书韬, 刘均, 等. 金属夹层结构的舰船应用研究综述[J]. 中国舰船研究, 2013, 8(6): 6–13. doi: 10.3969/j.issn.1673-3185.2013.06.002CHEN Y K, HE S T, LIU J, et al. Application and prospect of steel sandwich panels in warships[J]. Chinese Journal of Ship Research, 2013, 8(6): 6–13 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.06.002 [7] 赵著杰, 侯海量, 李典. 填充多胞元抗冲击防护结构动力学特性及防护性能研究进展[J]. 中国舰船研究, 2021, 16(3): 96–111. doi: 10.19693/j.issn.1673-3185.02053ZHAO Z J. HOU H L, LI D. Research progress on dynamic characteristics and protective performance of multicellular filled impact resistant protective structure[J]. Chinese Journal of Ship Research, 2021, 16(3): 96–111 (in Chinese). doi: 10.19693/j.issn.1673-3185.02053 [8] LIU J F, CHEN W S, HAO H, et al. In-plane crushing behaviors of hexagonal honeycombs with different Poisson's ratio induced by topological diversity[J]. Thin-Walled Structures, 2021, 159: 107223. doi: 10.1016/j.tws.2020.107223 [9] GIBSON L J, ASHBY M F. Cellular solids: structure and properties[M]. Oxford: Pergamon Press, 1988. [10] HUANG J, GONG X B, ZHANG Q H, et al. In-plane mechanics of a novel zero Poisson's ratio honeycomb core[J]. Composites Part B: Engineering, 2016, 89: 67–76. doi: 10.1016/j.compositesb.2015.11.032 [11] SCARPA F, TOMLIN P J. On the transverse shear modulus of negative Poisson's ratio honeycomb structures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(8): 717–720. [12] SCHULTZ J, GRIESE D, JU J, et al. Design of honeycomb mesostructures for crushing energy absorption[J]. Journal of Mechanical Design, 2012, 134(7): 071004. doi: 10.1115/1.4006739 [13] ZHU F, ZHAO L M, LU G X, et al. Deformation and failure of blast-loaded metallic sandwich panels-experimental investigations[J]. International Journal of Impact Engineering, 2008, 35(8): 937–951. doi: 10.1016/j.ijimpeng.2007.11.003 [14] HABIB F N, IOVENITTI P, MASOOD S H, et al. In-plane energy absorption evaluation of 3D printed polymeric honeycombs[J]. Virtual and Physical Prototyping, 2017, 12(2): 117–131. doi: 10.1080/17452759.2017.1291354 [15] FOO C C, CHAI G B, SEAH L K. Quasi-static and low-velocity impact failure of aluminium honeycomb sandwich panels[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2006, 220(2): 53–66. doi: 10.1243/14644207JMDA98 [16] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs—a finite element study[J]. International Journal of Impact Engineering, 2003, 28(2): 161–182. doi: 10.1016/S0734-743X(02)00056-8 [17] HU L L, ZHOU M Z, DENG H. Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation[J]. Composite Structures, 2019, 207: 323–330. doi: 10.1016/j.compstruct.2018.09.066 [18] 张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能[J]. 爆炸与冲击, 2012, 32(5): 475–482. doi: 10.3969/j.issn.1001-1455.2012.05.005ZHANG X C, LIU Y, LI N. In-plane dynamic crushing of honeycombs with negative Poisson's ratio effects[J]. Explosion and Shock Waves, 2012, 32(5): 475–482 (in Chinese). doi: 10.3969/j.issn.1001-1455.2012.05.005 [19] GRIMA J N, OLIVERI L, ATTARD D, et al. Hexagonal honeycombs with zero poisson's ratios and enhanced stiffness[J]. Advanced Engineering Materials, 2010, 12(9): 855–862. doi: 10.1002/adem.201000140 [20] 陈鹏, 侯秀慧, 张凯. 面内冲击荷载下半凹角蜂窝的抗冲击特性[J]. 高压物理学报, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759CHEN P, HOU X H, ZHANG K. Impact resistance of semi re-entrant honeycombs under in-plane dynamic crushing[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064104 (in Chinese). doi: 10.11858/gywlxb.20190759 [21] RAHMAN O, KOOHBOR B. Optimization of energy absorption performance of polymer honeycombs by density gradation[J]. Composites Part C: Open Access, 2020, 3: 100052. doi: 10.1016/j.jcomc.2020.100052 [22] ZHANG X C, AN L Q, DING H M, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio[J]. Journal of Sandwich Structures & Materials, 2015, 17(1): 26–55. [23] HÖNIG A, STRONGE W J. In-plane dynamic crushing of honeycomb. part I: crush band initiation and wave trapping[J]. International Journal of Mechanical Sciences, 2002, 44(8): 1665–1696. doi: 10.1016/S0020-7403(02)00060-7 [24] LUO Y, YUAN K, SHEN L M, et al. Sandwich panel with in-plane honeycombs in different Poisson's ratio under low to medium impact loads[J]. Reviews on Advanced Materials Science, 2021, 60(1): 145–157. doi: 10.1515/rams-2021-0020 [25] 丁圆圆, 郑志军, 王士龙, 等. 多孔材料吸能行为对相对密度和冲击速度的依赖性[J]. 固体力学学报, 2018, 39(6): 578–586.DING Y Y, ZHENG Z J, WANG S L, et al. The dependence of energy absorption behavior of cellular materials on relative density and impact velocity[J]. Chinese Journal of Solid Mechanics, 2018, 39(6): 578–586 (in Chinese). [26] 魏刚, 张伟, 邓云飞. 基于J-C模型的45钢本构参数识别及验证[J]. 振动与冲击, 2019, 38(5): 173–178. doi: 10.13465/j.cnki.jvs.2019.05.025WEI G, ZHANG W, DENG Y F. Identification and validation of constitutive parameters of 45 Steel based on J-C model[J]. Journal of Vibration and Shock, 2019, 38(5): 173–178 (in Chinese). doi: 10.13465/j.cnki.jvs.2019.05.025 [27] HU L L, YOU F F, YU T X. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs[J]. Materials & Design, 2013, 46: 511–523. [28] WANG Z G, LI Z D, ZHOU W, et al. On the influence of structural defects for honeycomb structure[J]. Composites Part B: Engineering, 2018, 142: 183–192. doi: 10.1016/j.compositesb.2018.01.015 [29] JIN T, ZHOU Z W, WANG Z H, et al. Experimental study on the effects of specimen in-plane size on the mechanical behavior of aluminum hexagonal honeycombs[J]. Materials Science and Engineering: A, 2015, 635: 23–35. doi: 10.1016/j.msea.2015.03.053 [30] 胡玲玲, 余同希. 惯性效应对蜂窝能量吸收性能的影响[J]. 兵工学报, 2009, 38(增刊 2): 24–27.HU L L, YU T X. Influence of inertia effect on the energy absorption of hexagonal honeycombs[J]. Acta Armamentarii, 2009, 38(Supp 2): 24–27 (in Chinese). [31] HU L L, YU T X. Dynamic crushing strength of hexagonal honeycombs[J]. International Journal of Impact Engineering, 2010, 37(5): 467–474. doi: 10.1016/j.ijimpeng.2009.12.001 -