留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强聚乙烯层合板抗破片模拟弹侵彻性能数值分析

戴文喜 谢伟 胡鹏程 程远胜 闫小顺 张攀

戴文喜, 谢伟, 胡鹏程, 等. 高强聚乙烯层合板抗破片模拟弹侵彻性能数值分析[J]. 中国舰船研究, 2023, 18(2): 20–27 doi: 10.19693/j.issn.1673-3185.02741
引用本文: 戴文喜, 谢伟, 胡鹏程, 等. 高强聚乙烯层合板抗破片模拟弹侵彻性能数值分析[J]. 中国舰船研究, 2023, 18(2): 20–27 doi: 10.19693/j.issn.1673-3185.02741
DAI W X, XIE W, HU P C, et al. Ballistic performance of ultra-high molecular weight polyethylene laminates against fragment-simulating projectiles[J]. Chinese Journal of Ship Research, 2023, 18(2): 20–27 doi: 10.19693/j.issn.1673-3185.02741
Citation: DAI W X, XIE W, HU P C, et al. Ballistic performance of ultra-high molecular weight polyethylene laminates against fragment-simulating projectiles[J]. Chinese Journal of Ship Research, 2023, 18(2): 20–27 doi: 10.19693/j.issn.1673-3185.02741

高强聚乙烯层合板抗破片模拟弹侵彻性能数值分析

doi: 10.19693/j.issn.1673-3185.02741
基金项目: 国家级重大基础研究项目;国家自然科学基金资助项目(52171307)
详细信息
    作者简介:

    戴文喜,男,1984年生,博士,高级工程师

    谢伟,男,1969年生,博士,研究员

    胡鹏程,男,1995年生,博士生。研究方向:船舶结构优化设计。E-mail:d202080619@hust.edu.cn

    程远胜,男,1962年生,博士,教授,博士生导师。研究方向:船舶海洋结构优化设计。E-mail:yscheng@mail.hust.edu.cn

    闫小顺,男,1990年生,硕士,高级工程师

    张攀,男,1986年生,博士,副教授。研究方向:结构优化设计和抗爆抗冲击。E-mail:panzhang@hust.edu.cn

    通信作者:

    戴文喜

  • 中图分类号:  U663.2; TJ012,4

Ballistic performance of ultra-high molecular weight polyethylene laminates against fragment-simulating projectiles

知识共享许可协议
高强聚乙烯层合板抗破片模拟弹侵彻性能数值分析戴文喜,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在探究破片侵彻作用下高强聚乙烯(UHMWPE)纤维增强层合板的毁伤响应过程、失效模式转变和能量吸收特性。  方法  采用有限元软件ANSYS/AUTODYN,建立UHMWPE层合板抗破片侵彻数值模型,分析UHMWPE层合板的失效模式转变和能量吸收特性。  结果  破片侵彻作用下UHMWPE层合板的动态响应过程大致可以分为剪切冲塞阶段和拉伸变形阶段。破片入射速度和靶板厚度会直接影响靶板的能量吸收特性。靶板厚度越大,剪切冲塞模式占比越大。在靶板厚度不变的情况下,随着破片侵彻速度的提高,剪切冲塞模式占比越来越大,最终趋于稳定。在破片弹道极限速度以上初始小范围内,靶板吸能随破片入射速度增大有所减小,随后破片速度继续增加会扩大靶板剪切冲塞破坏范围,导致靶板整体吸能量增加。  结论  基于所建立的数值模型能够较好地模拟破片侵彻作用下UHMWPE层合板的动态响应过程,可以为UHMWPE材料在弹道防护领域的应用提供参考。
  • 图  破片侵彻UHMWPE层合板几何模型

    Figure  1.  Geometrical model of the UHMWPE laminate plate pierced by fragment

    图  FSP侵彻UHMWPE层合板有限元模型

    Figure  2.  Finite element model of the UHMWPE laminate plate pierced by the FSP

    图  破片以888 m/s速度侵彻厚度为36 mm的 UHMWPE层合板时背面鼓包变形对比[19]

    Figure  3.  Comparison of bulging deformation for the 36 mm thickness UHMWPE laminate plate pierced by the fragments at 888 m/s [19]

    图  破片以365 m/s速度侵彻厚度为10 mm的UHMWPE层合板时背面鼓包变形对比

    Figure  4.  Comparison of bulging deformation between simulation and experimental results for the 10 mm thickness UHMWPE laminate plate pierced by the fragments at 365 m/s

    图  在直径为20 mm FSP侵彻作用下不同厚度UHMWPE层合板的剩余速度拟合曲线

    Figure  5.  Numerical residual velocity predictions for UHMWPE laminate plate with different thicknesses pierced by the FSP with a diameter of 20 mm

    图  破片加速度时程曲线和典型时刻靶板的毁伤容貌

    Figure  6.  Acceleration time histories of the fragments and corresponding failure profiles of the target plate at typical moments

    图  不同破片侵彻速度下3种厚度靶板的剪切冲塞厚度占总厚度的比值

    Figure  7.  Ratios of shear plugging thickness to total thickness for the target plate with three different thicknesses pierced by the fragments at various velocities

    图  不同破片侵彻速度下3种厚度靶板的单位质量吸能

    Figure  8.  Specific energy absorbtion of the target plate with three different thicknesses pierced by the fragments at various velocities

    表  4340H钢材料参数[16-17]

    Table  1.  Material parameters of 4340H steel[16-17]

    参数数值
    密度${\rho }_{\rm{s}}$/(g·cm−3)7.88
    剪切模量G/GPa77.8
    静态屈服强度A/MPa1 030
    应变硬化系数B/MPa477
    应变硬化指数n0.18
    应变率硬化系数C0.012
    热软化指数m1
    材料熔化温度Tm/K1 763
    参考应变率${\dot{\varepsilon }}_{0}/$s−11
    下载: 导出CSV

    表  UHMWPE层合板材料参数[17]

    Table  2.  Material parameters of a UHMWPE laminate plate[17]

    参数数值参数数值
    ρ/(g·cm−3)0.98Г1.64
    E11/GPa3.62A110.016
    E22/GPa51.1A226×10−4
    E33/GPa51.1A336×10−4
    ν120.013S11/GPa1×1020
    ν230S22/GPa1.15
    υ310.5S33/GPa1.15
    G12/GPa2G11,f/(J·m−2)790
    G23/GPa0.192G22,f/(J·m−2)30
    G31/GPa2G33,f/(J·m−2)30
    下载: 导出CSV

    表  不同厚度UHMWPE层合板试验与仿真弹道极限速度结果对比

    Table  3.  Comparison of ballistic limit velocity results for the UHMWPE laminate plate with different thicknesses

    靶板厚度/mmFSP直径/mm试验弹道极限速度[19]/(m·s−1)仿真弹道极限速度/(m·s−1)相对误差/%
    102039443911.42
    36209011 09821.86
    102202 0022 40019.88
    下载: 导出CSV
  • [1] 梅志远, 朱锡, 张立军. FRC层合板抗高速冲击机理研究[J]. 复合材料学报, 2006, 23(2): 143–149. doi: 10.3321/j.issn:1000-3851.2006.02.025

    MEI Z Y, ZHU X, ZHANG L J. Ballistic protective mechanism of FRC laminates[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 143–149 (in Chinese). doi: 10.3321/j.issn:1000-3851.2006.02.025
    [2] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms: a review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures, 2019, 223: 110966. doi: 10.1016/j.compstruct.2019.110966
    [3] 邵磊, 余新泉, 于良. 防弹纤维复合材料在装甲防护上的应用[J]. 高科技纤维与应用, 2007, 32(2): 31–34,45. doi: 10.3969/j.issn.1007-9815.2007.02.007

    SHAO L, YU X Q, YU L. Applications of antiballistic fiber composites in armor protection[J]. Hi-Tech Fiber & Application, 2007, 32(2): 31–34,45 (in Chinese). doi: 10.3969/j.issn.1007-9815.2007.02.007
    [4] 李典, 侯海量, 朱锡, 等. 舰船装甲防护结构抗弹道冲击的研究进展[J]. 中国造船, 2018, 59(1): 237–250. doi: 10.3969/j.issn.1000-4882.2018.01.023

    LI D, HOU H L, ZHU X, et al. Review on ballistic impact resistance of ship armor protection structure[J]. Shipbuilding of China, 2018, 59(1): 237–250 (in Chinese). doi: 10.3969/j.issn.1000-4882.2018.01.023
    [5] 王晓强, 虢忠仁, 宫平, 等. 抗弹复合材料在舰船防护上的应用研究[J]. 工程塑料应用, 2014, 42(11): 143–146. doi: 10.3969/j.issn.1001-3539.2014.11.69

    WANG X Q, GUO Z R, GONG P, et al. Application research of bulletproof composites in warship protection[J]. Engineering Plastics Application, 2014, 42(11): 143–146 (in Chinese). doi: 10.3969/j.issn.1001-3539.2014.11.69
    [6] SHIN Y H, CHUNG J H, KIM J H. Test and estimation of ballistic armor performance for recent naval ship structural materials[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(6): 762–781. doi: 10.1016/j.ijnaoe.2017.10.007
    [7] 胡年明, 朱锡, 侯海量, 等. 高速破片侵彻下高分子聚乙烯层合板的弹道极限估算方法[J]. 中国舰船研究, 2014, 9(4): 55–62. doi: 10.3969/j.issn.1673-3185.2014.04.009

    HU N M, ZHU X, HOU H L, et al. Estimating method for the ballistic limit of ultra-high molecular weight poly-ethylene fiber-reinforced laminates under high-velocity fragment penetration[J]. Chinese Journal of Ship Research, 2014, 9(4): 55–62 (in Chinese). doi: 10.3969/j.issn.1673-3185.2014.04.009
    [8] 秦曾涌, 何煌, 曾首义. 超高分子量聚乙烯纤维增强层合板抗弹性能的数值模拟[C]//第19届全国结构工程学术会议论文集. 济南: 中国力学学会工程力学编辑部, 2010: 137-141.

    QIN Z Y, HE H, ZENG S Y. Numerical simulation of ballistic performance of UFRP[C]//Proceedings of the 19th National Conference on Structural Engineering. Ji'nan: Editorial Department of engineering mechanics, Chinese society of mechanics, 2010: 137-141 (in Chinese).
    [9] 夏清波, 晏麓晖, 冯兴民. UHMWPE纤维层合板抗弹侵彻数值模拟[J]. 四川兵工学报, 2011, 32(2): 119–121,136.

    XIA Q B, YAN L H, FENG X M. Numerical simulation of ballistic about UHMWPE composite against bullets[J]. Journal of Sichuan Ordnance, 2011, 32(2): 119–121,136 (in Chinese).
    [10] 黄拱武, 陈爱军, 罗少敏, 等. 弹体侵彻UHMWPE软质纤维层的数值仿真研究[J]. 计算机仿真, 2013, 30(10): 6–9,212. doi: 10.3969/j.issn.1006-9348.2013.10.002

    HUANG G W, CHEN A J, LUO S M, et al. Numerical simulation on bullet penetrating UHMWPE soft fiber layer[J]. Computer Simulation, 2013, 30(10): 6–9,212 (in Chinese). doi: 10.3969/j.issn.1006-9348.2013.10.002
    [11] ZHU H X, HOBDELL J R, WINDLE A H. Effects of cell irregularity on the elastic properties of open-cell foams[J]. Acta Materialia, 2000, 48(20): 4893–4900. doi: 10.1016/S1359-6454(00)00282-2
    [12] LIU G, THOULESS M D, DESHPANDE V S, et al. Collapse of a composite beam made from ultra high molecular-weight polyethylene fibres[J]. Journal of the Mechanics and Physics of Solids, 2014, 63: 320–335. doi: 10.1016/j.jmps.2013.08.021
    [13] CHOCRON S, NICHOLLS A E, BRILL A, et al. Modeling unidirectional composites by bundling fibers into strips with experimental determination of shear and com-pression properties at high pressures[J]. Composites Science and Technology, 2014, 101: 32–40. doi: 10.1016/j.compscitech.2014.06.016
    [14] HAZZARD M K, TRASK R S, HEISSERER U, et al. Finite element modelling of Dyneema® composites: from quasi-static rates to ballistic impact[J]. Composites Part A:Applied Science and Manufacturing, 2018, 115: 31–45. doi: 10.1016/j.compositesa.2018.09.005
    [15] SIGNETTI S, BOSIA F, RYU S, et al. A combined experimental/numerical study on the scaling of impact strength and toughness in composite laminates for ballistic applications[J]. Composites Part B: Engineering, 2020, 195: 108090. doi: 10.1016/j.compositesb.2020.108090
    [16] YEN C F. A ballistic material model for continuous-fiber reinforced composites[J]. International Journal of Impact Engineering, 2012, 46: 11–22. doi: 10.1016/j.ijimpeng.2011.12.007
    [17] NGUYEN L H, LÄSSIG T R, RYAN S, et al. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 224–235. doi: 10.1016/j.compositesa.2016.01.014
    [18] CHEN J K, ALLAHDADI F A, SUN C T. A quadratic yield function for fiber-reinforced composites[J]. Journal of Composite Materials, 1997, 31(8): 788–811. doi: 10.1177/002199839703100803
    [19] NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite[J]. International Journal of Impact Engineering, 2015, 75: 174–183. doi: 10.1016/j.ijimpeng.2014.07.008
    [20] LÄSSIG T, NGUYEN L, MAY M, et al. A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations[J]. International Journal of Impact Engineering, 2015, 75: 110–22. doi: 10.1016/j.ijimpeng.2014.07.004
    [21] ZHANG T G, SATAPATHY S S, VARGAS-GONZALEZ L R, et al. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE)[J]. Composite Structures, 2015, 133: 191–201. doi: 10.1016/j.compstruct.2015.06.081
    [22] ZHANG R, QIANG L S, HAN B, et al. Ballistic performance of UHMWPE laminated plates and UHMWPE encapsulated aluminum structures: numerical simulation[J]. Composite Structures, 2020, 252: 112686. doi: 10.1016/j.compstruct.2020.112686
    [23] MORYE S S, HINE P J, DUCKETT R A, et al. Modelling of the energy absorption by polymer composites upon ballistic impact[J]. Composites Science and Technology, 2000, 60(14): 2631–2642. doi: 10.1016/S0266-3538(00)00139-1
  • ZG2741_en.pdf
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1677
  • HTML全文浏览量:  96
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-03-25
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回