Ballistic performance of ultra-high molecular weight polyethylene laminates against fragment-simulating projectiles
-
摘要:
目的 旨在探究破片侵彻作用下高强聚乙烯(UHMWPE)纤维增强层合板的毁伤响应过程、失效模式转变和能量吸收特性。 方法 采用有限元软件ANSYS/AUTODYN,建立UHMWPE层合板抗破片侵彻数值模型,分析UHMWPE层合板的失效模式转变和能量吸收特性。 结果 破片侵彻作用下UHMWPE层合板的动态响应过程大致可以分为剪切冲塞阶段和拉伸变形阶段。破片入射速度和靶板厚度会直接影响靶板的能量吸收特性。靶板厚度越大,剪切冲塞模式占比越大。在靶板厚度不变的情况下,随着破片侵彻速度的提高,剪切冲塞模式占比越来越大,最终趋于稳定。在破片弹道极限速度以上初始小范围内,靶板吸能随破片入射速度增大有所减小,随后破片速度继续增加会扩大靶板剪切冲塞破坏范围,导致靶板整体吸能量增加。 结论 基于所建立的数值模型能够较好地模拟破片侵彻作用下UHMWPE层合板的动态响应过程,可以为UHMWPE材料在弹道防护领域的应用提供参考。 Abstract:Objectives This paper aims to study the dynamic perforation response process, failure mode transition and energy absorbtion characteristics of ultra-high molecular weight polyethylene (UHMWPE)laminates against fragment-simulating projectiles (FSPs). Methods FE software ANSYS/AUTODYN is employed to establish a numerical model for fragment penetration resistance of UHMWPE laminates, and analyze the failure mode transition and energy absorbtion characteristics of the target plates. Results The process can be roughly divided into two stages: the shear plugging stage and stretch deformation stage. The thicker the target plate, the greater the proportion of the shear plugging mode. When the thickness of the target plate is constant, with the increase in fragment penetration velocity, the proportion of the shear plugging mode becomes larger until it reaches a stable level. In the initial small range above the ballistic limit velocity, the energy absorbtion of the target plate is negatively related to the velocity of the projectiles. As the fragment velocity increases, the shear plugging range of the fiber fracturing enlarges, and the energy absorbtion of the targets increases with the velocity of the projectiles. Conclusions Based on the proposed numerical model, the dynamic response process of UHMWPE laminates against FSPs can be simulated accurately, which can provide references for the application of UHMWPE laminate plates in the ballistic protection field. -
参数 数值 密度${\rho }_{\rm{s}}$/(g·cm−3) 7.88 剪切模量G/GPa 77.8 静态屈服强度A/MPa 1 030 应变硬化系数B/MPa 477 应变硬化指数n 0.18 应变率硬化系数C 0.012 热软化指数m 1 材料熔化温度Tm/K 1 763 参考应变率${\dot{\varepsilon }}_{0}/$s−1 1 参数 数值 参数 数值 ρ/(g·cm−3) 0.98 Г 1.64 E11/GPa 3.62 A11 0.016 E22/GPa 51.1 A22 6×10−4 E33/GPa 51.1 A33 6×10−4 ν12 0.013 S11/GPa 1×1020 ν23 0 S22/GPa 1.15 υ31 0.5 S33/GPa 1.15 G12/GPa 2 G11,f/(J·m−2) 790 G23/GPa 0.192 G22,f/(J·m−2) 30 G31/GPa 2 G33,f/(J·m−2) 30 表 3 不同厚度UHMWPE层合板试验与仿真弹道极限速度结果对比
Table 3. Comparison of ballistic limit velocity results for the UHMWPE laminate plate with different thicknesses
靶板厚度/mm FSP直径/mm 试验弹道极限速度[19]/(m·s−1) 仿真弹道极限速度/(m·s−1) 相对误差/% 10 20 394 439 11.42 36 20 901 1 098 21.86 102 20 2 002 2 400 19.88 -
[1] 梅志远, 朱锡, 张立军. FRC层合板抗高速冲击机理研究[J]. 复合材料学报, 2006, 23(2): 143–149. doi: 10.3321/j.issn:1000-3851.2006.02.025MEI Z Y, ZHU X, ZHANG L J. Ballistic protective mechanism of FRC laminates[J]. Acta Materiae Compositae Sinica, 2006, 23(2): 143–149 (in Chinese). doi: 10.3321/j.issn:1000-3851.2006.02.025 [2] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms: a review on textiles and fibre-reinforced composites impact responses[J]. Composite Structures, 2019, 223: 110966. doi: 10.1016/j.compstruct.2019.110966 [3] 邵磊, 余新泉, 于良. 防弹纤维复合材料在装甲防护上的应用[J]. 高科技纤维与应用, 2007, 32(2): 31–34,45. doi: 10.3969/j.issn.1007-9815.2007.02.007SHAO L, YU X Q, YU L. Applications of antiballistic fiber composites in armor protection[J]. Hi-Tech Fiber & Application, 2007, 32(2): 31–34,45 (in Chinese). doi: 10.3969/j.issn.1007-9815.2007.02.007 [4] 李典, 侯海量, 朱锡, 等. 舰船装甲防护结构抗弹道冲击的研究进展[J]. 中国造船, 2018, 59(1): 237–250. doi: 10.3969/j.issn.1000-4882.2018.01.023LI D, HOU H L, ZHU X, et al. Review on ballistic impact resistance of ship armor protection structure[J]. Shipbuilding of China, 2018, 59(1): 237–250 (in Chinese). doi: 10.3969/j.issn.1000-4882.2018.01.023 [5] 王晓强, 虢忠仁, 宫平, 等. 抗弹复合材料在舰船防护上的应用研究[J]. 工程塑料应用, 2014, 42(11): 143–146. doi: 10.3969/j.issn.1001-3539.2014.11.69WANG X Q, GUO Z R, GONG P, et al. Application research of bulletproof composites in warship protection[J]. Engineering Plastics Application, 2014, 42(11): 143–146 (in Chinese). doi: 10.3969/j.issn.1001-3539.2014.11.69 [6] SHIN Y H, CHUNG J H, KIM J H. Test and estimation of ballistic armor performance for recent naval ship structural materials[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(6): 762–781. doi: 10.1016/j.ijnaoe.2017.10.007 [7] 胡年明, 朱锡, 侯海量, 等. 高速破片侵彻下高分子聚乙烯层合板的弹道极限估算方法[J]. 中国舰船研究, 2014, 9(4): 55–62. doi: 10.3969/j.issn.1673-3185.2014.04.009HU N M, ZHU X, HOU H L, et al. Estimating method for the ballistic limit of ultra-high molecular weight poly-ethylene fiber-reinforced laminates under high-velocity fragment penetration[J]. Chinese Journal of Ship Research, 2014, 9(4): 55–62 (in Chinese). doi: 10.3969/j.issn.1673-3185.2014.04.009 [8] 秦曾涌, 何煌, 曾首义. 超高分子量聚乙烯纤维增强层合板抗弹性能的数值模拟[C]//第19届全国结构工程学术会议论文集. 济南: 中国力学学会工程力学编辑部, 2010: 137-141.QIN Z Y, HE H, ZENG S Y. Numerical simulation of ballistic performance of UFRP[C]//Proceedings of the 19th National Conference on Structural Engineering. Ji'nan: Editorial Department of engineering mechanics, Chinese society of mechanics, 2010: 137-141 (in Chinese). [9] 夏清波, 晏麓晖, 冯兴民. UHMWPE纤维层合板抗弹侵彻数值模拟[J]. 四川兵工学报, 2011, 32(2): 119–121,136.XIA Q B, YAN L H, FENG X M. Numerical simulation of ballistic about UHMWPE composite against bullets[J]. Journal of Sichuan Ordnance, 2011, 32(2): 119–121,136 (in Chinese). [10] 黄拱武, 陈爱军, 罗少敏, 等. 弹体侵彻UHMWPE软质纤维层的数值仿真研究[J]. 计算机仿真, 2013, 30(10): 6–9,212. doi: 10.3969/j.issn.1006-9348.2013.10.002HUANG G W, CHEN A J, LUO S M, et al. Numerical simulation on bullet penetrating UHMWPE soft fiber layer[J]. Computer Simulation, 2013, 30(10): 6–9,212 (in Chinese). doi: 10.3969/j.issn.1006-9348.2013.10.002 [11] ZHU H X, HOBDELL J R, WINDLE A H. Effects of cell irregularity on the elastic properties of open-cell foams[J]. Acta Materialia, 2000, 48(20): 4893–4900. doi: 10.1016/S1359-6454(00)00282-2 [12] LIU G, THOULESS M D, DESHPANDE V S, et al. Collapse of a composite beam made from ultra high molecular-weight polyethylene fibres[J]. Journal of the Mechanics and Physics of Solids, 2014, 63: 320–335. doi: 10.1016/j.jmps.2013.08.021 [13] CHOCRON S, NICHOLLS A E, BRILL A, et al. Modeling unidirectional composites by bundling fibers into strips with experimental determination of shear and com-pression properties at high pressures[J]. Composites Science and Technology, 2014, 101: 32–40. doi: 10.1016/j.compscitech.2014.06.016 [14] HAZZARD M K, TRASK R S, HEISSERER U, et al. Finite element modelling of Dyneema® composites: from quasi-static rates to ballistic impact[J]. Composites Part A:Applied Science and Manufacturing, 2018, 115: 31–45. doi: 10.1016/j.compositesa.2018.09.005 [15] SIGNETTI S, BOSIA F, RYU S, et al. A combined experimental/numerical study on the scaling of impact strength and toughness in composite laminates for ballistic applications[J]. Composites Part B: Engineering, 2020, 195: 108090. doi: 10.1016/j.compositesb.2020.108090 [16] YEN C F. A ballistic material model for continuous-fiber reinforced composites[J]. International Journal of Impact Engineering, 2012, 46: 11–22. doi: 10.1016/j.ijimpeng.2011.12.007 [17] NGUYEN L H, LÄSSIG T R, RYAN S, et al. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 224–235. doi: 10.1016/j.compositesa.2016.01.014 [18] CHEN J K, ALLAHDADI F A, SUN C T. A quadratic yield function for fiber-reinforced composites[J]. Journal of Composite Materials, 1997, 31(8): 788–811. doi: 10.1177/002199839703100803 [19] NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite[J]. International Journal of Impact Engineering, 2015, 75: 174–183. doi: 10.1016/j.ijimpeng.2014.07.008 [20] LÄSSIG T, NGUYEN L, MAY M, et al. A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations[J]. International Journal of Impact Engineering, 2015, 75: 110–22. doi: 10.1016/j.ijimpeng.2014.07.004 [21] ZHANG T G, SATAPATHY S S, VARGAS-GONZALEZ L R, et al. Ballistic impact response of ultra-high-molecular-weight polyethylene (UHMWPE)[J]. Composite Structures, 2015, 133: 191–201. doi: 10.1016/j.compstruct.2015.06.081 [22] ZHANG R, QIANG L S, HAN B, et al. Ballistic performance of UHMWPE laminated plates and UHMWPE encapsulated aluminum structures: numerical simulation[J]. Composite Structures, 2020, 252: 112686. doi: 10.1016/j.compstruct.2020.112686 [23] MORYE S S, HINE P J, DUCKETT R A, et al. Modelling of the energy absorption by polymer composites upon ballistic impact[J]. Composites Science and Technology, 2000, 60(14): 2631–2642. doi: 10.1016/S0266-3538(00)00139-1 -
ZG2741_en.pdf
-