留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内嵌PEI薄膜的船用碳纤维复合材料层合板冲击损伤特性分析

王冠华 黄治新 赵天 李营

王冠华, 黄治新, 赵天, 等. 内嵌PEI薄膜的船用碳纤维复合材料层合板冲击损伤特性分析[J]. 中国舰船研究, 2023, 18(2): 48–54, 63 doi: 10.19693/j.issn.1673-3185.02737
引用本文: 王冠华, 黄治新, 赵天, 等. 内嵌PEI薄膜的船用碳纤维复合材料层合板冲击损伤特性分析[J]. 中国舰船研究, 2023, 18(2): 48–54, 63 doi: 10.19693/j.issn.1673-3185.02737
WANG G H, HUANG Z X, ZHAO T, et al. Analysis of impact damage characteristics of marine carbon fiber composite laminates embedded with PEI film[J]. Chinese Journal of Ship Research, 2023, 18(2): 48–54, 63 doi: 10.19693/j.issn.1673-3185.02737
Citation: WANG G H, HUANG Z X, ZHAO T, et al. Analysis of impact damage characteristics of marine carbon fiber composite laminates embedded with PEI film[J]. Chinese Journal of Ship Research, 2023, 18(2): 48–54, 63 doi: 10.19693/j.issn.1673-3185.02737

内嵌PEI薄膜的船用碳纤维复合材料层合板冲击损伤特性分析

doi: 10.19693/j.issn.1673-3185.02737
详细信息
    作者简介:

    王冠华,男,1997年生,硕士生。研究方向:船舶与海洋工程结构物设计制造。E-mail:whutwangguanhua@whut.edu.cn

    黄治新,男,1990年生,博士,副教授。研究方向:薄壁和多孔材料的能量吸收,复合材料冲击动力学,力学超材料研究。E-mail:huangzhixin1802@163.com

    赵天,男,1990年生,博士,副教授。研究方向:复合材料结构设计与力学分析,高分子复合材料改性及制造工艺,机械加工及仪器设备研制。 E-mail:t.zhao@bit.edu.cn

    李营,男,1988年生,博士,教授。研究方向:舰艇爆炸毁伤与防护。E-mail:bitliying@bit.edu.cn

    通信作者:

    李营

  • 中图分类号: U661.4;U668.5

Analysis of impact damage characteristics of marine carbon fiber composite laminates embedded with PEI film

知识共享许可协议
内嵌PEI薄膜的船用碳纤维复合材料层合板冲击损伤特性分析王冠华,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  在传统船用碳纤维复合材料层合板层间添加热塑性相材料能有效提升船用复合材料的抗冲击性能,为探究其冲击损伤特性,开展实验研究。  方法  使用光学显微镜观察层合板的热塑性/热固性界面,分析两相材料的结合方式;对不同结构的复合材料层合板进行低、中、高3种不同能量的低速冲击;通过超声C扫描与电子显微镜,对各试件的损伤形貌进行观测,以研究各试件的冲击响应及损伤机理。  结果  结果显示,相较于碳纤维层合板,含热塑性相的船用复合材料层合板具有更好的损伤阻抗;内部嵌膜层合板试件在冲击能量为8和12 J的冲击下,内部分层损伤分别减少了19%和39%,且受到12 J冲击后,内部结构损伤较小,完整性较好。  结论  将PEI热塑性膜嵌于内部能提升层合板的韧性,显著减少内部分层损伤,明显提升内部嵌膜层合板的抗冲击性能。
  • 图  热压成型工艺所需压力及温度条件

    Figure  1.  Pressure and temperature conditions required by hot pressing process

    图  环氧树脂-PEI膜界面观察

    Figure  2.  Observation of the epoxy resin-PEI interphase

    图  落锤冲击试验机

    Figure  3.  Drop hammer impact test rig

    图  不同层合板的冲击损伤表观形态图

    Figure  4.  Impact damage appearance of different laminates

    图  不同层合板的内部分层形态图

    Figure  5.  Impact delamination appearance of different laminates

    图  分层面积对比柱状图

    Figure  6.  Comparison of histogram for delamination area

    图  SEM损伤形貌观测 (12 J冲击能量)

    Figure  7.  Schematic diagram of SEM damage morphology observation under 12 J of impact energy

    图  C1~C3工况下各试件的冲击力时间曲线

    Figure  8.  Impact force versus time curves of each test specimen under C1–C3 working conditions

    图  C1~C3工况下各试件层合板变形对比柱状图

    Figure  9.  Comparison of histogram for deformation of each laminate test specimen under C1–C3 working conditions

    表  各试件参数

    Table  1.  Parameters of each specimen

    添加类型铺层方案厚度/mm重量/g
    未添加薄膜(02/902)2s1.9827.5
    内部嵌膜(02/902)PEI(02/902)PEI(902/02)PEI(902/02)2.5233.0
    双面覆膜PEI (02/902)2PEI(902/02)2PEI2.5233.1
    下载: 导出CSV

    表  落锤冲击试验工况

    Table  2.  Drop hammer impact test conditions

    工况编号锤头质量/kg速度/(m·s−1)冲击能量/J
    C1 (低)5.61.204
    C2 (中)5.61.708
    C3 (高)5.62.0912
    下载: 导出CSV
  • [1] 汪璇, 裴轶群, 周方宇, 等. 船舶复合材料应用现状及发展趋势[J]. 造船技术, 2021, 49(4): 74–80. doi: 10.12225/j.issn.1000-3878.2021.04.20210414

    WANG X, PEI Y Q, ZHOU F Y, et al. Application status and development trend of ship composite materials[J]. Marine Technology, 2021, 49(4): 74–80 (in Chinese). doi: 10.12225/j.issn.1000-3878.2021.04.20210414
    [2] 牛峰, 王建平, 马春草, 等. 碳纤维复合材料在舰艇显控台上的应用[J]. 舰船科学技术, 2019, 41(6): 85–88. doi: 10.3404/j.issn.1672-7649.2019.06.018

    NIU F, WANG J P, MA C C, et al. The application of carbon fiber composite material in naval vessel console[J]. Ship Science and Technology, 2019, 41(6): 85–88 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.06.018
    [3] 史晋蕾, 姚丽瑞. 航空复合材料技术[M]. 北京: 航空工业出版社, 2011.

    SHI J L, YAO L R. Aeronautical composite technology[M]. Beijing: Aviation Industry Press, 2011 (in Chinese).
    [4] 钱江, 李楠, 史文强. 复合材料在国外海军舰船上层建筑上的应用与发展[J]. 舰船科学技术, 2015, 37(1): 233–237. doi: 10.3404/j.issn.1672-7649.2015.01.051

    QIAN J, LI N, SHI W Q. The application and development of composites for foreign naval warships' superstructure[J]. Ship Science and Technology, 2015, 37(1): 233–237 (in Chinese). doi: 10.3404/j.issn.1672-7649.2015.01.051
    [5] ZHU L G. Investigations on damage resistance of carbon fiber composite panels toughened using veils[J]. Chinese Journal of Aeronautics, 2013, 26(3): 807–813. doi: 10.1016/j.cja.2013.05.006
    [6] CANTURRI C, GREENHALGH E S, PINHO S T, et al. Delamination growth directionality and the subsequent migration processes—the key to damage tolerant design[J]. Composites Part A: Applied Science and Manufacturing, 2013, 54: 79–87. doi: 10.1016/j.compositesa.2013.07.004
    [7] BULL D J, SCOTT A E, SPEARING S M, et al. The influence of toughening-particles in CFRPs on low velocity impact damage resistance performance[J]. Composites Part A:Applied Science and Manufacturing, 2014, 58: 47–55. doi: 10.1016/j.compositesa.2013.11.014
    [8] HOJO M, MATSUDA S, TANAKA M, et al. Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates[J]. Composites Science and Technology, 2006, 66(5): 665–675. doi: 10.1016/j.compscitech.2005.07.038
    [9] TSIANGOU E, DE FREITAS S T, VILLEGAS I F, et al. Investigation on energy director-less ultrasonic welding of polyetherimide (PEI)-to epoxy-based composites[J]. Composites Part B: Engineering, 2019, 173: 107014. doi: 10.1016/j.compositesb.2019.107014
    [10] LESTRIEZ B, CHAPEL J P, GÉRARD J F. Gradient interphase between reactive epoxy and glassy thermoplastic from dissolution process, reaction kinetics, and phase separation thermodynamics[J]. Macromolecules, 2001, 34(5): 1204–1213. doi: 10.1021/ma0012189
    [11] NAFFAKH M, DUMON M, GÉRARD J F. Study of a reactive epoxy–amine resin enabling in situ dissolution of thermoplastic films during resin transfer moulding for toughening composites[J]. Composites Science and Technology, 2006, 66(10): 1376–1384. doi: 10.1016/j.compscitech.2005.09.007
    [12] VANDI L J, HOU M, VEIDT M, et al. Interface diffusion and morphology of aerospace grade epoxy co-cured with thermoplastic polymers[C]//Proceedings of the 28th International Congress of the Aeronautical Sciences (ICAS 2012). Brisbane: ICAS, 2012.
    [13] LU W H, LIAO F S, SU A C, et al. Effect of interleaving on the impact response of a unidirectional carbon/epoxy composite[J]. Composites, 1995, 26(3): 215–222. doi: 10.1016/0010-4361(95)91385-I
    [14] 方群. 纳米纤维膜在高效空气过滤和碳纤维复合材料层间增韧中的应用研究[D]. 北京: 北京化工大学, 2016.

    FANG Q. Application of nanofiber membrane in high efficiency air filtration membrane and carbon fiber composite interlaminar toughening[D]. Beijing: Beijing University of Chemical Technology, 2016 (in Chinese).
    [15] SONNENFELD C, MENDIL-JAKANI H, AGOGUÉ R, et al. Thermoplastic/thermoset multilayer composites: a way to improve the impact damage tolerance of thermosetting resin matrix composites[J]. Composite Structures, 2017, 171: 298–305. doi: 10.1016/j.compstruct.2017.03.044
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1349
  • HTML全文浏览量:  59
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-03-28
  • 网络出版日期:  2023-04-10
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回