留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进灰狼优化算法的舰船电力系统故障重构

张馨悦 肖健梅 王锡淮

张馨悦, 肖健梅, 王锡淮. 基于改进灰狼优化算法的舰船电力系统故障重构[J]. 中国舰船研究, 2023, 18(2): 251–259 doi: 10.19693/j.issn.1673-3185.02714
引用本文: 张馨悦, 肖健梅, 王锡淮. 基于改进灰狼优化算法的舰船电力系统故障重构[J]. 中国舰船研究, 2023, 18(2): 251–259 doi: 10.19693/j.issn.1673-3185.02714
ZHANG X Y, XIAO J M, WANG X H. Fault reconfiguration of ship power system based on improved grey wolf optimization algorithm[J]. Chinese Journal of Ship Research, 2023, 18(2): 251–259 doi: 10.19693/j.issn.1673-3185.02714
Citation: ZHANG X Y, XIAO J M, WANG X H. Fault reconfiguration of ship power system based on improved grey wolf optimization algorithm[J]. Chinese Journal of Ship Research, 2023, 18(2): 251–259 doi: 10.19693/j.issn.1673-3185.02714

基于改进灰狼优化算法的舰船电力系统故障重构

doi: 10.19693/j.issn.1673-3185.02714
基金项目: 国家自然科学基金资助项目(71771143)
详细信息
    作者简介:

    张馨悦,女,1998年生,硕士生。研究方向:电力系统智能控制与优化。E-mail:15891729983@163.com

    肖健梅,女,1962年生,硕士,教授。研究方向:智能控制,粗糙集理论,物流系统优化。E-mail:jmxiao@shmtu.edu.cn

    王锡淮,男,1961年生,博士,教授。研究方向:复杂系统建模与控制,系统优化与仿真,交通控制工程。E-mail: wxh@shmtu.edu.cn

    通信作者:

    肖健梅

  • 中图分类号: U665.1

Fault reconfiguration of ship power system based on improved grey wolf optimization algorithm

知识共享许可协议
基于改进灰狼优化算法的舰船电力系统故障重构张馨悦,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为了更好地分析和解决舰船电力系统故障重构问题,并建立以负载失电量、开关操作次数为优化目标的舰船电力系统故障重构模型,提出一种改进灰狼优化算法来对其求解。  方法  针对灰狼优化算法的不足,首先加入Tent混沌映射;其次,用余弦函数改进收敛因子,使收敛因子初期维持较大的值缓慢减小,后期提高衰减速率;然后,加入非支配排序和拥挤度计算改进决策狼选择策略;最后,将灰狼个体进行离散化处理,使其可用于舰船电力系统故障重构问题。  结果  舰船电力系统网络故障重构算例表明,在负载和发电机故障这两种情况下,所提方法得到的Pareto解集中负载失电量、重构开关操作次数与改进差分进化算法、改进粒子群算法及改进遗传算法相比均较小,并在最佳迭代次数即寻优速度上具有一定的优势。  结论  所提方法能获得更好的系统重构方案,可克服传统灰狼优化算法收敛速度慢、初始化种群多样性较差、容易陷入局部最优等问题,更好地保证舰船安全稳定的运行。
  • 图  环形供电结构示意图

    Figure  1.  Schematic diagram of ring power supply structure

    图  灰狼等级制度示意图

    Figure  2.  Schematic diagram of grey wolf hierarchy

    图  收敛因子曲线对比图

    Figure  3.  Comparison diagram of convergence factor curve

    图  算法流程图

    Figure  4.  Algorithm flow chart

    图  故障1工况下MOGWO算法的多目标函数

    Figure  5.  Multi-objective function value of MOGWO under fault condition 1

    图  故障1重构方案

    Figure  6.  Reconstruction scheme under fault condition 1

    图  故障2工况下MOGWO算法的多目标函数值

    Figure  7.  Multi-objective function value of MOGWO under fault condition 2

    图  故障2重构方案

    Figure  8.  Reconstruction scheme under fault condition 2

    表  系统负载工作电流及负荷等级

    Table  1.  Working current and load level of system load

    编号工作电流/A负荷等级编号工作电流/A负荷等级
    $ {L_1} $701$ {L_{11}} $2251
    $ {L_2} $1203$ {L_{12}} $2053
    $ {L_3} $2002$ {L_{13}} $1102
    $ {L_4} $1503$ {L_{14}} $723
    $ {L_5} $1602$ {L_{15}} $872
    $ {L_6} $1001$ {L_{16}} $1001
    $ {L_7} $803$ {L_{17}} $2052
    $ {L_8} $3251$ {L_{18}} $2003
    $ {L_9} $1853$ {L_{19}} $1653
    $ {L_{10}} $442$ {L_{20}} $302
    下载: 导出CSV

    表  故障1工况下几种恢复算法的结果对比

    Table  2.  Comparison of results of several recovery algorithms under fault condition 1

    算法最优解最小负载失电量/A最小开关操作数/次$ GE{N_{{\text{best}}}} $
    CMPMDE1121111101102111211139054
    EPDSDE1121121101102111211139064
    TSDE11212112111021112111205623
    MSCPSO1121111111102111111139
    GA1120121111102211110177
    MOGWO1101121111100111111120543
    下载: 导出CSV

    表  故障2工况下几种恢复算法的结果对比

    Table  3.  Comparison of results of several recovery algorithms under fault condition 2

    算法最优解最小负载失电量/A最小开关操作数/次$ GE{N_{{\text{best}}}} $
    CMPMDE202001111210111211011 76094
    EPDSDE202001111210111211011 76095
    TSDE20202111011111111001820929
    GA202021111111111121017
    MOGWO2020211111111111211147563
    下载: 导出CSV
  • [1] BABAEI M, SHI J, ABDELWAHED S. A survey on fault detection, isolation, and reconfiguration methods in electric ship power systems[J]. IEEE Access, 2018, 6: 9430–9441. doi: 10.1109/ACCESS.2018.2798505
    [2] 王锡淮, 李军军, 肖健梅. 求解舰船电力系统网络重构的贪婪DPSO算法[J]. 控制与决策, 2008, 23(2): 157–161. doi: 10.3321/j.issn:1001-0920.2008.02.007

    WANG X H, LI J J, XIAO J M. Greed DPSO algorithm for network reconfiguration of shipboard power system[J]. Control and Decision, 2008, 23(2): 157–161 (in Chinese). doi: 10.3321/j.issn:1001-0920.2008.02.007
    [3] SRIVASTAVA S K, BUTLER-PURRY K L, SARMA N D R. Shipboard power restored for active duty[J]. IEEE Computer Applications in Power, 2002, 15(3): 16–23. doi: 10.1109/MCAP.2002.1018818
    [4] LAN H, XIAO Y Y, ZHANG L J. Multi-agent system optimized reconfiguration of shipboard power system[J]. Journal of Marine Science and Application, 2010, 9(3): 334–339. doi: 10.1007/s11804-010-1017-2
    [5] 贾利雷. 舰船电力系统网络故障重构研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    JIA L L. Research on fault reconstruction of ship power system network[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
    [6] 马理胜, 张均东, 任光. 基于环境Pareto支配选择差分进化算法的舰船电网重构[J]. 大连海事大学学报, 2018, 44(2): 33–38. doi: 10.16411/j.cnki.issn1006-7736.2018.02.006

    MA L S, ZHANG J D, REN G. Shipboard power grid reconstruction based on environment Pareto dominated selection differential evolution algorithm[J]. Journal of Dalian Maritime University, 2018, 44(2): 33–38 (in Chinese). doi: 10.16411/j.cnki.issn1006-7736.2018.02.006
    [7] 马理胜, 张均东, 任光, 等. 基于混沌迁移及无参数变异差分进化算法的舰船电力系统网络重构[J]. 上海海事大学学报, 2015, 36(3): 76–81. doi: 10.13340/j.jsmu.2015.03.013

    MA L S, ZHANG J D, REN G, et al. Network reconfiguration of ship power system based on chaotic migration and parameterless mutation differential evolution algorithm[J]. Journal of Shanghai Maritime University, 2015, 36(3): 76–81 (in Chinese). doi: 10.13340/j.jsmu.2015.03.013
    [8] 张灵杰. 船舶电力系统故障状态下的网络重构算法研究[D]. 大连: 大连海事大学, 2018.

    ZHANG L J. Algorithm research on network reconfiguration of ship power system under fault condition[D]. Dalian: Dalian Maritime University, 2018 (in Chinese).
    [9] SHARIATZADEH F, KUMAR N, SRIVASTAVA A K. Optimal control algorithms for reconfiguration of shipboard microgrid distribution system using intelligent techniques[J]. IEEE Transactions on Industry Applications, 2017, 53(1): 474–482. doi: 10.1109/TIA.2016.2601558
    [10] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007
    [11] 张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30–38. doi: 10.11896/j.issn.1002-137X.2019.03.004

    ZHANG X F, WANG X Y. Comprehensive review of grey wolf optimization algorithm[J]. Computer Science, 2019, 46(3): 30–38 (in Chinese). doi: 10.11896/j.issn.1002-137X.2019.03.004
    [12] 龙文, 蔡绍洪, 焦建军, 等. 求解高维优化问题的混合灰狼优化算法[J]. 控制与决策, 2016, 31(11): 1991–1997. doi: 10.13195/j.kzyjc.2015.1183

    LONG W, CAI S H, JIAO J J, et al. Hybrid grey wolf optimization algorithm for high-dimensional optimization[J]. Control and Decision, 2016, 31(11): 1991–1997 (in Chinese). doi: 10.13195/j.kzyjc.2015.1183
    [13] SAREMI S, MIRJALILI S Z, MIRJALILI S M. Evolutionary population dynamics and grey wolf optimizer[J]. Neural Computing and Applications, 2015, 26(5): 1257–1263. doi: 10.1007/s00521-014-1806-7
    [14] 姜天华. 混合灰狼优化算法求解柔性作业车间调度问题[J]. 控制与决策, 2018, 33(3): 503–508. doi: 10.13195/j.kzyjc.2017.0124

    JIANG T H. Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm[J]. Control and Decision, 2018, 33(3): 503–508 (in Chinese). doi: 10.13195/j.kzyjc.2017.0124
    [15] 顾九春, 姜天华, 朱惠琦. 多目标离散灰狼优化算法求解作业车间节能调度问题[J]. 计算机集成制造系统, 2021, 27(8): 2295–2306. doi: 10.13196/j.cims.2021.08.012

    GU J C, JIANG T H, ZHU H Q. Energy-saving job shop scheduling problem with multi-objective discrete grey wolf optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2021, 27(8): 2295–2306 (in Chinese). doi: 10.13196/j.cims.2021.08.012
    [16] MIRJALILI S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons[J]. Applied Intelligence, 2015, 43(1): 150–161. doi: 10.1007/s10489-014-0645-7
    [17] MIRJALILI S, SAREMI S, MIRJALILI S M, et al. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47: 106–119. doi: 10.1016/j.eswa.2015.10.039
    [18] 滕志军, 吕金玲, 郭力文, 等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018, 50(11): 40–49. doi: 10.11918/j.issn.0367-6234.201806096

    TENG Z J, LV J L, GUO L W, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 40–49 (in Chinese). doi: 10.11918/j.issn.0367-6234.201806096
    [19] 魏政磊, 赵辉, 李牧东, 等. 控制参数值非线性调整策略的灰狼优化算法[J]. 空军工程大学学报(自然科学版), 2016, 17(3): 68–72.

    WEI Z L, ZHAO H, LI M D, et al. A grey wolf optimization algorithm based on nonlinear adjustment strategy of control parameter[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(3): 68–72 (in Chinese).
    [20] 张兰勇, 孟坤, 刘胜, 等. 基于改进双粒子群算法的舰船电力系统网络故障重构[J]. 电力系统保护与控制, 2019, 47(9): 90–96. doi: 10.7667/PSPC180605

    ZHANG L Y, MENG K, LIU S, et al. Reconstruction of ship power system network fault based on improved two particle swarm algorithm[J]. Power System Protection and Control, 2019, 47(9): 90–96 (in Chinese). doi: 10.7667/PSPC180605
    [21] 赵云涛, 谌竟成, 李维刚. 融合自适应差分进化机制的多目标灰狼优化算法[J]. 计算机科学, 2019, 46(S2): 83–88.

    ZHAO Y T, CHEN J C, LI W G. Multi-objective grey wolf optimization hybrid adaptive differential evolution mechanism[J]. Computer Science, 2019, 46(S2): 83–88 (in Chinese).
    [22] 苏丽, 王锡淮, 肖健梅. 基于多目标优化算法的船舶微电网重构[J]. 中国舰船研究, 2020, 15(3): 169–176. doi: 10.19693/j.issn.1673-3185.01534

    SU L, WANG X H, XIAO J M. Ship micro-grid reconfiguration based on multiobjective optimization algorithm[J]. Chinese Journal of Ship Research, 2020, 15(3): 169–176 (in Chinese). doi: 10.19693/j.issn.1673-3185.01534
    [23] 何芳, 蔡兴国. 基于改进遗传算法的舰船电力系统网络重构[J]. 电工技术学报, 2006, 21(9): 25–30. doi: 10.3321/j.issn:1000-6753.2006.09.005

    HE F, CAI X G. Network reconfiguration of shipboard power system based on improved genetic arithmetic[J]. Transactions of China Electrotechnical Society, 2006, 21(9): 25–30 (in Chinese). doi: 10.3321/j.issn:1000-6753.2006.09.005
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  80
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 修回日期:  2022-04-25
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回