Application of improved cohesive zone length formula in ice mode I crack propagation
-
摘要:
目的 内聚区长度是处于破坏边缘的内聚力单元长度与其连接的其他内聚力单元长度之和,决定了网格的最大尺寸。精确估算内聚区长度并合理划分网格是影响计算精度的重要因素。 方法 为此,基于J积分的部分假设和已有的研究成果,在原有的内聚区长度计算公式中增加关于长厚比的修正函数,然后将修正后的内聚区长度计算公式应用于冰力学模型,再基于有限元法建立双悬臂梁数值模型进行模拟,并与试验结果进行对比,以验证修正后内聚区长度计算公式的精确性。 结果 研究表明,在一个内聚区长度内至少存在4个内聚力单元才能较精确地描述断裂过程。相关结果应用于三点弯曲试验模型模拟的结果显示,断裂点的极限载荷误差为2.9%且在合理范围内。 结论 修正后的内聚区长度公式更适用于冰材料。 Abstract:Objectives The cohesive zone length is the sum of the cohesive element length at the failure edge and the lengths of the other cohesive elements connected to it. The cohesive zone length determines the maximum size of the mesh. Therefore, the accurate estimation of cohesive zone length and reasonable mesh division are important factors affecting calculation accuracy. Methods Based on several J-integral assumptions and existing research results, a modified function on length thickness ratio value is added to the original formula. The modified formula is then applied to an ice mechanics model. Based on the finite element method, a model of a double cantilever beam is established to verify the accuracy of the formula through comparison with the experimental results. Results The results show that there must be at least four cohesive elements in a cohesive zone length to describe the fracture process accurately. This conclusion is also applied to the numerical simulation of a three-point bending experiment. The error of the limit load is 2.9%, and that of the fracture point is within a reasonable range. Conclusion It is concluded that the modified cohesive zone length formula is more suitable for ice materials. -
表 1 试验参数
Table 1. Experimental parameters
参数 数值 密度/( kg·m−3) 894 杨氏模量/ GPa 6.83 弯曲强度/ MPa 3.2 泊松比 0.25 温度/℃ −10 应变速率/ s−1 4.604×10−3 极限载荷/ N 1 127.9 极限挠度/ mm 0.39 加载历时/ s 1.21 -
[1] 刘璐, 龙雪, 季顺迎. 基于扩展多面体的离散单元法及其作用于圆桩的冰载荷计算[J]. 力学学报, 2015, 47(6): 1046–1057. doi: 10.6052/0459-1879-15-121LIU L, LONG X, JI S Y. Dilated polyhedra based discrete element method and its application of ice load on cylindrical pile[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1046–1057 (in Chinese). doi: 10.6052/0459-1879-15-121 [2] DI S C, XUE Y Z, WANG Q, et al. Discrete element simulation of ice loads on narrow conical structures[J]. Ocean Engineering, 2017, 146: 282–297. doi: 10.1016/j.oceaneng.2017.09.033 [3] 王健伟, 邹早建. 基于非线性有限元法的船舶-冰层碰撞结构响应研究[J]. 振动与冲击, 2015, 34(23): 125–130.WANG J W, ZOU Z J. Ship's structural response during its collision with level ice based on nonlinear finite element method[J]. Journal of Vibration and Shock, 2015, 34(23): 125–130 (in Chinese). [4] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100–104. doi: 10.1016/0022-5096(60)90013-2 [5] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55–129. [6] NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525–531. doi: 10.1115/1.3173064 [7] MULMULE S V, DEMPSEY J P. Scale effects on sea ice fracture[J]. Mechanics of Cohesive-Frictional Materials, 1999, 4(6): 505–524. doi: 10.1002/(SICI)1099-1484(199911)4:6<505::AID-CFM67>3.0.CO;2-P [8] MULMULE S V, DEMPSEY J P. A viscoelastic fictitious crack model for the fracture of sea ice[J]. Mechanics of Time-Dependent Materials, 1997, 1(4): 331–356. doi: 10.1023/A:1008063516422 [9] KUUTTI J, KOLARI K, MARJAVAARA P. Simulation of ice crushing experiments with cohesive surface methodology[J]. Cold Regions Science and Technology, 2013, 92: 17–28. doi: 10.1016/j.coldregions.2013.03.008 [10] LU W J, LØSET S, LUBBAD R. Simulating ice-sloping structure interactions with the cohesive element method[C]//Proceedings of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: ASME, 2012. [11] WANG F, ZOU Z J, GUO H P, et al. Numerical simulations of continuous icebreaking process with different heel angles in level ice[C]//Proceedings of the 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain: ASME, 2018. [12] 王峰, 邹早建, 任奕舟. 基于粘聚单元模型的平整冰-竖直圆柱体碰撞数值模拟[J]. 振动与冲击, 2019, 38(16): 153–158.WANG F, ZOU Z J, REN Y Z. Numerical simulation of level ice-vertical cylinder collision based on a cohesive element model[J]. Journal of Vibration and Shock, 2019, 38(16): 153–158 (in Chinese). [13] 刘路平, 李欣, 徐胜文, 等. 基于黏聚单元法的抗冰海洋平台与层冰相互作用数值模拟[J]. 海洋工程, 2019, 37(2): 20–28.LIU L P, LI X, XU S W, et al. Numerical simulation of interaction between ice-resistant platform and level ice with cohesive element method[J]. The Ocean Engineering, 2019, 37(2): 20–28 (in Chinese). [14] 蒋昱妍. 基于粘聚单元法的海洋结构物-层冰碰撞数值模拟[D]. 大连: 大连理工大学, 2020.JIANG Y Y. Numerical simulation of marine structure–level ice collision based on the cohesive element method[D]. Dalian: Dalian University of Technology, 2020 (in Chinese). [15] GÜRTNER A, BJERKÅS M, KÜHNLEIN W, et al. Numerical simulation of ice action to a lighthouse[C]//Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, Hawaii, USA: ASME, 2009. [16] HARPER P W, HALLETT S R. Cohesive zone length in numerical simulations of composite delamination[J]. Engineering Fracture Mechanics, 2008, 75(16): 4774–4792. doi: 10.1016/j.engfracmech.2008.06.004 [17] BAO G, SUO Z. Remarks on crack-bridging concepts[J]. Applied Mechanics Reviews, 1992, 45(8): 355–366. doi: 10.1115/1.3119764 [18] NEEDLEMAN A. Micromechanical modelling of interfacial decohesion[J]. Ultramicroscopy, 1992, 40(3): 203–214. doi: 10.1016/0304-3991(92)90117-3 [19] TVERGAARD V, HUTCHINSON J W. The influence of plasticity on mixed mode interface toughness[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(6): 1119–1135. doi: 10.1016/0022-5096(93)90057-M [20] MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14): 1246–1272. doi: 10.1177/002199839803201401 [21] XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397–1434. doi: 10.1016/0022-5096(94)90003-5 [22] 李世愚, 和泰明, 尹祥础. 岩石断裂力学[M]. 北京: 科学出版社, 2015.LI S Y, HE T M, YIN X C. Rock fracture mechanics[M]. Beijing: Science Press, 2015 (in Chinese). [23] HILLERBORG A, MODÉER M, PETERSSON P. E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773–781. doi: 10.1016/0008-8846(76)90007-7 [24] WANG F, ZOU Z J, ZHOU L, et al. Numerical simulation of ice milling loads on propeller blade with cohesive element method[J]. Brodogradnja, 2019, 70(1): 109–128. doi: 10.21278/brod70108 [25] PLANAS J, ELICES M. Nonlinear fracture of cohesive materials[J]. International Journal of Fracture, 1991, 51(2): 139–157. doi: 10.1007/BF00033975 [26] 倪宝玉, 黄其, 陈绾绶, 等. 计及流体影响的船舶回转冰阻力数值模拟[J]. 中国舰船研究, 2020, 15(2): 1–7.NI B Y, HUANG Q, CHEN W S, et al. Numerical simulation of ice resistance of ship turning in level ice zone considering fluid effects[J]. Chinese Journal of Ship Research, 2020, 15(2): 1–7 (in Chinese). [27] TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science andTechnology, 2010, 60(2): 107–129. doi: 10.1016/j.coldregions.2009.10.003 [28] 薛彦卓, 陆锡奎, 王庆, 等. 冰三点弯曲试验的近场动力学数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(4): 607–613.XUE Y Z, LU X K, WANG Q, et al. Simulation of three-point bending test of ice based on peridynamic[J]. Journal of Harbin Engineering University, 2018, 39(4): 607–613 (in Chinese). -
ZG2701_en.pdf
ZG2701_en.pdf
-