Vortex-induced vibration of cylinder under sub-critical Reynolds number
-
摘要:
目的 为了实现亚临界雷诺数下圆柱涡激振动振幅响应的准确预报,利用数值模拟方法研究强迫振动时圆柱的升力系数与振幅比(Cl-A/D)之间的关系。 方法 基于Realizable k-ε 湍流模型,采用有限体积法对圆柱的强迫振动进行二维数值模拟,计算得到激振频率比fe/fn=1附近范围内不同振幅比下的升力系数曲线。选取圆柱振动速度最大时对应的升力系数,建立Cl-A/D关系曲线。 结果 结果表明,Cl-A/D拟合曲线总体变化趋势与涡激振动预报程序SHEAR7的结果吻合良好。同时,各激振频率比fe/fn下的零升力系数点均位于振幅比A/D=0.8附近,且结构尾涡脱落模式在A/D=0.8附近发生了转变,由“P+S”模式转变到“2P”模式(P 表示一对旋转方向相反的旋涡脱落,S 表示单个旋涡脱落)。在圆柱涡激振动实验中,发现涡激振动出现“锁定”时的最大振幅在0.8D附近。 结论 亚临界雷诺数下强迫振动圆柱Cl-A/D关系曲线升力系数为零时对应的振幅比与圆柱在涡激振动中的最大响应振幅比基本保持一致,且圆柱尾涡脱落模式在此振幅比下发生了转变。 Abstract:Objective In order to achieve the accurate prediction of the amplitude response of a vortex-induced vibrating cylinder under the sub-critical Reynolds number, a method for establishing a Cl-A/D (lift coefficient-amplitude ratio)model of the forced vibration of the cylinder by numerical simulation is proposed. Methods Based on the Realizable k-ε model, a two-dimensional numerical simulation of the forced vibration of a cylinder is carried out using the finite volume method. The calculated lift coefficient curves under different amplitude ratios A/D in the range of excitation frequency ratio fe/fn=1 are obtained. The lift coefficient corresponding to the maximum vibration velocity of the cylinder is then selected to establish the Cl-A/D model. Results The results show that the overall trend of the Cl-A/D fitting curve is in good agreement with the predicted results of SHEAR7. At the same time, it is found that the "zero lift coefficient" points under each excitation frequency ratio fe/fn are all located near the amplitude ratio A/D=0.8, and the wake shedding mode changes around A/D=0.8 from "P+S" to "2P" (P represents a pair of vortex shedding with opposite rotation directions, and S represents a single vortex shedding). In the vortex-induced vibration experiment of a single cylinder, the maximum amplitude when "lock-in" occurs is around 0.8D. Conclusions The amplitude ratio corresponding to the "zero lift coefficient" of the Cl-A/D model of forced vibrating cylinder under sub-critical Reynolds number is consistent with the maximum response amplitude ratio of the cylinder under vortex-induced vibration, and the shedding mode of the wake vortex changes under this amplitude ratio. -
Key words:
- vortex-induced vibration /
- forced oscillation /
- vortex shedding mode /
- amplitude ratio /
- frequency ratio
-
表 1 无量纲频率比及振幅比范围
Table 1. Non-dimensional frequency ratio and amplitude ratio
A/D fe/fn 0.3~1.2 0.83,0.91,1.00,1.11,1.25,1.42 -
[1] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 413–455. doi: 10.1146/annurev.fluid.36.050802.122128 [2] 侯磊, 丁云峰, 王晴, 等. 高雷诺数下水翼涡发放频率预报方法[J]. 中国舰船研究, 2019, 14(6): 88–97.HOU L, DING Y F, WANG Q, et al. Prediction method of hydrofoil vortex shedding frequency at high Reynolds numbers[J]. Chinese Journal of Ship Research, 2019, 14(6): 88–97 (in Chinese). [3] WILLIAMSON C H K, ROSHKO A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures, 1988, 2(4): 355–381. doi: 10.1016/S0889-9746(88)90058-8 [4] PEPPA S, KAIKTSIS L, TRIANTAFYLLOU G S. Hydrodynamic forces and flow structures in flow past a cylinder forced to vibrate transversely and inline to a steady flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138(1): 011803. doi: 10.1115/1.4032031 [5] MENEGHINI J R, BEARMAN P W. Numerical simulation of high amplitude oscillatory flow about a circular cylinder[J]. Journal of Fluids and Structures, 1995, 9(4): 435–455. doi: 10.1006/jfls.1995.1025 [6] MORSE T L, WILLIAMSON C H K. Fluid forcing, wake modes, and transitions for a cylinder undergoing controlled oscillation[J]. Journal of Fluids and Structures, 2009, 25(4): 697–712. doi: 10.1016/j.jfluidstructs.2008.12.003 [7] MORSE T L, WILLIAMSON C H K. Prediction of vortex-induced vibration response by employing controlled motion[J]. Journal of Fluid Mechanics, 2009, 634: 5–39. doi: 10.1017/S0022112009990516 [8] 王凯鹏, 赵西增. 横向受迫振荡圆柱绕流升阻力系数研究[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 579–585.WANG K P, ZHAO X Z. Research about lift and drag coefficient of circular cylinder oscillating transverse to the flow[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017, 31(5): 579–585 (in Chinese). [9] 朱永健, 宗智. 定常流中横向振动圆柱的升力突变现象研究[J]. 水动力学研究与进展A辑, 2020, 35(5): 592–600.ZHU Y J, ZONG Z. Study on the sharp change of lift force of a cylinder with transverse vibration in the steady flow[J]. Chinese Journal of Hydrodynamics, 2020, 35(5): 592–600 (in Chinese). [10] 邓迪, 王哲, 万德成. 振荡流中二维圆柱的涡激振动数值模拟[J]. 中国舰船研究, 2018, 13(增刊1): 7-14.DENG D, WANG Z, WANG D C. Numerical simulation of vortex-induced vibration of a 2D cylinder in oscillatory flow[J]. Chinese Journal of Ship Research, 2018, 13(Supp 1): 7-14 (in Chinese). [11] WU J , M. LEKKALA K R, ONG M C. Numerical investigation of vortex-induced vibrations of a flexible riser with staggered buoyancy elements[J]. Applied Sciences-Basel, 2020, 10(3): 905. doi: 10.3390/app10030905 [12] VANDIVER J K, LI L. SHEAR7 program theory manual[M]. [S.l.]: Department of Ocean Engineering, MIT, 1999. [13] 段金龙, 周济福, 王旭, 等. 剪切流场中含内流立管横向涡激振动特性[J]. 力学学报, 2021, 53(7): 1876–1884. doi: 10.6052/0459-1879-21-171DUAN J L, ZHOU J F, WANG X, et al. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1876–1884 (in Chinese). doi: 10.6052/0459-1879-21-171 [14] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227–238. [15] 邓跃. 低雷诺数下均匀流和振荡流共同作用的圆柱体受迫振动和涡激振动研究[D]. 青岛: 中国海洋大学, 2014.DENG Y. Study on forced oscillation and vortex-induced vibration (VIV) of circular cylinder under combined uniform flow and oscillatory flow at low Reynolds number[D]. Qingdao: Ocean University of China, 2014 (in Chinese). [16] 喻晨欣, 王嘉松, 郑瀚旭. 高分辨率TVD-FVM方法求解二维圆柱受迫振动问题[J]. 水动力学研究与进展A辑, 2018, 33(5): 593–600.YU C X, WANG J S, ZHENG H X. Two-dimensional simulation on forced oscillations of a circular cylinder using high-resolution TVD-FVM method[J]. Chinese Journal of Hydrodynamics, 2018, 33(5): 593–600 (in Chinese). [17] SARPKAYA T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response[J]. Journal of offshore Mechanics and Arctic engineering, 1995, 117(4): 232–238. doi: 10.1115/1.2827228 [18] GOPALKRISHNAN R. Vortex-induced forces on oscillating bluff cylinders[D]. Cambridge: Massachusetts Institute of Technology, 1993. [19] 樊娟娟, 唐友刚, 张若瑜, 等. 高雷诺数下圆柱绕流与大振幅比受迫振动的数值模拟[J]. 水动力学研究与进展A辑, 2012, 27(1): 24–32.FAN J J, TANG Y G, ZHANG R Y, et al. Numerical simulation of viscous flow around circular cylinder at high Reynolds numbers and forced oscillating at large ratio of amplitude[J]. Chinese Journal of Hydrodynamics, 2012, 27(1): 24–32 (in Chinese). [20] PARK K S, KIM Y T, KIM D K, et al. A new method for strake configuration design of Steel Catenary Risers[J]. Ships and Offshore Structures, 2016, 11(4): 385–404. doi: 10.1080/17445302.2014.999479 -
ZG2694_en.pdf
-