留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚临界雷诺数下单圆柱涡激振动研究

周力 邱中秋 袁亚帅 宗智

周力, 邱中秋, 袁亚帅, 等. 亚临界雷诺数下单圆柱涡激振动研究[J]. 中国舰船研究, 2022, 17(3): 145–152 doi: 10.19693/j.issn.1673-3185.02694
引用本文: 周力, 邱中秋, 袁亚帅, 等. 亚临界雷诺数下单圆柱涡激振动研究[J]. 中国舰船研究, 2022, 17(3): 145–152 doi: 10.19693/j.issn.1673-3185.02694
ZHOU L, QIU Z Q, YUAN Y S, et al. Vortex-induced vibration of cylinder under sub-critical Reynolds number[J]. Chinese Journal of Ship Research, 2022, 17(3): 145–152 doi: 10.19693/j.issn.1673-3185.02694
Citation: ZHOU L, QIU Z Q, YUAN Y S, et al. Vortex-induced vibration of cylinder under sub-critical Reynolds number[J]. Chinese Journal of Ship Research, 2022, 17(3): 145–152 doi: 10.19693/j.issn.1673-3185.02694

亚临界雷诺数下单圆柱涡激振动研究

doi: 10.19693/j.issn.1673-3185.02694
基金项目: 国家自然科学基金资助项目(52192692,51639003,52171294)
详细信息
    作者简介:

    周力,女,1965年生,副教授,硕士生导师。研究方向:涡激振动,船舶水动力学。E-mail:zhouli@dlut.edu.cn

    邱中秋,男,1995年生,硕士生。研究方向:计算流体力学,船舶水动力学。E-mail:qzq2960@163.com

    宗智,男,1964年生,博士,教授,博士生导师。研究方向:高性能船舶,船舶水动力学。E-mail:zongzhi@dlut.edu.cn

    通信作者:

    邱中秋

  • 中图分类号: U661.1

Vortex-induced vibration of cylinder under sub-critical Reynolds number

知识共享许可协议
亚临界雷诺数下单圆柱涡激振动研究周力,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为了实现亚临界雷诺数下圆柱涡激振动振幅响应的准确预报,利用数值模拟方法研究强迫振动时圆柱的升力系数与振幅比(Cl-A/D)之间的关系。  方法  基于Realizable k-ε 湍流模型,采用有限体积法对圆柱的强迫振动进行二维数值模拟,计算得到激振频率比fe/fn=1附近范围内不同振幅比下的升力系数曲线。选取圆柱振动速度最大时对应的升力系数,建立Cl-A/D关系曲线。  结果  结果表明,Cl-A/D拟合曲线总体变化趋势与涡激振动预报程序SHEAR7的结果吻合良好。同时,各激振频率比fe/fn下的零升力系数点均位于振幅比A/D=0.8附近,且结构尾涡脱落模式在A/D=0.8附近发生了转变,由“P+S”模式转变到“2P”模式(P 表示一对旋转方向相反的旋涡脱落,S 表示单个旋涡脱落)。在圆柱涡激振动实验中,发现涡激振动出现“锁定”时的最大振幅在0.8D附近。  结论  亚临界雷诺数下强迫振动圆柱Cl-A/D关系曲线升力系数为零时对应的振幅比与圆柱在涡激振动中的最大响应振幅比基本保持一致,且圆柱尾涡脱落模式在此振幅比下发生了转变。
  • 图  圆柱受迫振动计算域示意图

    Figure  1.  Schematics of the forced-oscillation computational domain

    图  固定网格划分示意图

    Figure  2.  Schematics of fixed mesh division

    图  Re=20 000固定圆柱升力系数能量谱密度

    Figure  3.  Energy spectral density of lift coefficient of fixed cylinder with Re=20 000

    图  A/D=0.5时最大升力系数Clmaxfe/fs变化曲线

    Figure  4.  Clmax variation versus fe/fs with A/D=0.5

    图  单周期内振动速度及升力系数变化曲线

    Figure  5.  Oscillating speed and lift coefficient varies within a single period

    图  升力系数随无量纲振幅比变化曲线

    Figure  6.  Variation of lift coefficient with dimensionless A/D

    图  各激振频率下升力系数拟合曲线

    Figure  7.  Fitting curves of lift coefficient at each excitation frequency

    图  各工况下Cl随振幅比A/D变化曲线

    Figure  8.  Variation of lift coefficient with A/D under all conditions

    图  圆柱涡激振动实验装置

    Figure  9.  Experimental device setup of cylindrical vortex-induced vibration

    图  10  圆柱振幅比及自激振动频率比随约化速度变化图

    Figure  10.  Changes in the amplitude ratio and self-induced vibration frequency ratio of the cylinder at different reduced speeds

    图  11  各频率比下涡量随振幅比变化图

    Figure  11.  Variation of vorticity with amplitude ratio at various frequency ratios

    表  无量纲频率比及振幅比范围

    Table  1.  Non-dimensional frequency ratio and amplitude ratio

    A/Dfe/fn
    0.3~1.20.83,0.91,1.00,1.11,1.25,1.42
    下载: 导出CSV
  • [1] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 413–455. doi: 10.1146/annurev.fluid.36.050802.122128
    [2] 侯磊, 丁云峰, 王晴, 等. 高雷诺数下水翼涡发放频率预报方法[J]. 中国舰船研究, 2019, 14(6): 88–97.

    HOU L, DING Y F, WANG Q, et al. Prediction method of hydrofoil vortex shedding frequency at high Reynolds numbers[J]. Chinese Journal of Ship Research, 2019, 14(6): 88–97 (in Chinese).
    [3] WILLIAMSON C H K, ROSHKO A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of Fluids and Structures, 1988, 2(4): 355–381. doi: 10.1016/S0889-9746(88)90058-8
    [4] PEPPA S, KAIKTSIS L, TRIANTAFYLLOU G S. Hydrodynamic forces and flow structures in flow past a cylinder forced to vibrate transversely and inline to a steady flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138(1): 011803. doi: 10.1115/1.4032031
    [5] MENEGHINI J R, BEARMAN P W. Numerical simulation of high amplitude oscillatory flow about a circular cylinder[J]. Journal of Fluids and Structures, 1995, 9(4): 435–455. doi: 10.1006/jfls.1995.1025
    [6] MORSE T L, WILLIAMSON C H K. Fluid forcing, wake modes, and transitions for a cylinder undergoing controlled oscillation[J]. Journal of Fluids and Structures, 2009, 25(4): 697–712. doi: 10.1016/j.jfluidstructs.2008.12.003
    [7] MORSE T L, WILLIAMSON C H K. Prediction of vortex-induced vibration response by employing controlled motion[J]. Journal of Fluid Mechanics, 2009, 634: 5–39. doi: 10.1017/S0022112009990516
    [8] 王凯鹏, 赵西增. 横向受迫振荡圆柱绕流升阻力系数研究[J]. 江苏科技大学学报(自然科学版), 2017, 31(5): 579–585.

    WANG K P, ZHAO X Z. Research about lift and drag coefficient of circular cylinder oscillating transverse to the flow[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017, 31(5): 579–585 (in Chinese).
    [9] 朱永健, 宗智. 定常流中横向振动圆柱的升力突变现象研究[J]. 水动力学研究与进展A辑, 2020, 35(5): 592–600.

    ZHU Y J, ZONG Z. Study on the sharp change of lift force of a cylinder with transverse vibration in the steady flow[J]. Chinese Journal of Hydrodynamics, 2020, 35(5): 592–600 (in Chinese).
    [10] 邓迪, 王哲, 万德成. 振荡流中二维圆柱的涡激振动数值模拟[J]. 中国舰船研究, 2018, 13(增刊1): 7-14.

    DENG D, WANG Z, WANG D C. Numerical simulation of vortex-induced vibration of a 2D cylinder in oscillatory flow[J]. Chinese Journal of Ship Research, 2018, 13(Supp 1): 7-14 (in Chinese).
    [11] WU J , M. LEKKALA K R, ONG M C. Numerical investigation of vortex-induced vibrations of a flexible riser with staggered buoyancy elements[J]. Applied Sciences-Basel, 2020, 10(3): 905. doi: 10.3390/app10030905
    [12] VANDIVER J K, LI L. SHEAR7 program theory manual[M]. [S.l.]: Department of Ocean Engineering, MIT, 1999.
    [13] 段金龙, 周济福, 王旭, 等. 剪切流场中含内流立管横向涡激振动特性[J]. 力学学报, 2021, 53(7): 1876–1884. doi: 10.6052/0459-1879-21-171

    DUAN J L, ZHOU J F, WANG X, et al. Cross-flow vortex-induced vibration of a flexible riser with internal flow in shear current[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1876–1884 (in Chinese). doi: 10.6052/0459-1879-21-171
    [14] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227–238.
    [15] 邓跃. 低雷诺数下均匀流和振荡流共同作用的圆柱体受迫振动和涡激振动研究[D]. 青岛: 中国海洋大学, 2014.

    DENG Y. Study on forced oscillation and vortex-induced vibration (VIV) of circular cylinder under combined uniform flow and oscillatory flow at low Reynolds number[D]. Qingdao: Ocean University of China, 2014 (in Chinese).
    [16] 喻晨欣, 王嘉松, 郑瀚旭. 高分辨率TVD-FVM方法求解二维圆柱受迫振动问题[J]. 水动力学研究与进展A辑, 2018, 33(5): 593–600.

    YU C X, WANG J S, ZHENG H X. Two-dimensional simulation on forced oscillations of a circular cylinder using high-resolution TVD-FVM method[J]. Chinese Journal of Hydrodynamics, 2018, 33(5): 593–600 (in Chinese).
    [17] SARPKAYA T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response[J]. Journal of offshore Mechanics and Arctic engineering, 1995, 117(4): 232–238. doi: 10.1115/1.2827228
    [18] GOPALKRISHNAN R. Vortex-induced forces on oscillating bluff cylinders[D]. Cambridge: Massachusetts Institute of Technology, 1993.
    [19] 樊娟娟, 唐友刚, 张若瑜, 等. 高雷诺数下圆柱绕流与大振幅比受迫振动的数值模拟[J]. 水动力学研究与进展A辑, 2012, 27(1): 24–32.

    FAN J J, TANG Y G, ZHANG R Y, et al. Numerical simulation of viscous flow around circular cylinder at high Reynolds numbers and forced oscillating at large ratio of amplitude[J]. Chinese Journal of Hydrodynamics, 2012, 27(1): 24–32 (in Chinese).
    [20] PARK K S, KIM Y T, KIM D K, et al. A new method for strake configuration design of Steel Catenary Risers[J]. Ships and Offshore Structures, 2016, 11(4): 385–404. doi: 10.1080/17445302.2014.999479
  • ZG2694_en.pdf
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  94
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-02-17
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回