Long marine shafting alignment and optimization considering propeller hydrodynamic force in wake field
-
摘要:
目的 针对计入螺旋桨水动力的舰船轴系校中计算,传统方法通常容易忽略船体伴流场的影响,使得螺旋桨水动力计算的结果与真实值之间存在较大偏差,从而导致轴系校中精度下降。 方法 以某舰船长轴系为对象,建立桨−轴−船一体化有限元模型及其伴流场流域模型,利用CFD数值仿真的叠模方法计算螺旋桨水动力;采用流固耦合法将流体计算结果作用于螺旋桨表面,进行轴系校中计算,并得到螺旋桨水动力对轴系整体挠曲线及各轴承状态参数的影响规律。在此基础上,引入多目标优化算法开展轴系多目标优化校中,来解决轴系末端四套轴承间载荷差值过大的问题。 结果 考虑螺旋桨水动力后,轴系尾部挠度变化减小,越靠近螺旋桨处的轴承其载荷所受影响越大,载荷值随进速系数的增大而减小;对比多目标优化前后的轴系校中状态,轴系各轴承之间的载荷差值明显减小,轴系运行状态得到改善。 结论 所提方法提高了计入螺旋桨水动力的轴系校中计算精度,可为轴系校中质量的提升提供参考。 Abstract:Objectives The traditional method of marine propulsion shafting alignment calculation usually ignores the influence of the ship's wake field, causing a large deviation between the computational result of the propeller hydrodynamic force and the real value which results in a decline in alignment accuracy. Methods Taking a long marine shafting as the research object, a propeller-shafting-hull integrated finite element model and its wake field model are established, and the propeller hydrodynamic force is calculated using the CFD numerical simulation method. The fluid-structure interaction method is used to apply the fluid computing results on the propeller surface for shafting alignment calculation, and the influence law of the propeller hydrodynamic force on the shafting deflection curve and the state parameters of each bearing are obtained. On this basis, in order to solve the problem of excessive load difference between the four bearings at the end of the long marine shafting, a multi-objective optimization algorithm is introduced for alignment calculation. Results When the propeller hydrodynamic force is considered, the deflection change of the shafting tail decreases. The closer to the propeller, the greater the influence of the bearing load, and the load value decreases with the increase of the advance coefficient. Comparing the alignment state of the shafting before and after multi-objective optimization, the load difference between the bearings is significantly reduced and the running state of the shafting is improved. Conclusions The proposed method can provide references for optimizing shafting alignment accuracy by considering the propeller hydrodynamic force. -
表 1 螺旋桨水动力计算结果
Table 1. Computing results of propeller hydrodynamic force
进速系数J 航速VP/(m·s−1) 轴向推力fx /kN 横向力fz /kN 垂向力fy /kN 阻力矩(扭矩)Mx /(kN·m) 0.6 0.5Vh 2 483.47 106.66 216.66 2 810.64 0.8 0.67Vh 1 962.02 83.15 264.76 2 337.22 1.0 0.83Vh 1 465.18 71.27 314.23 1 917.61 1.2 Vh 897.31 82.81 397.32 1 439.73 1.3 1.08Vh 560.13 89.08 417.63 1 150.18 表 2 长轴系各部件载荷及材料属性
Table 2. Loads and material properties of each component for the long marine shafting system
部件 载荷形式 杨氏模量E/Pa 泊松比ν 原密度ρ0/(kg·m−3) 浮力系数 计算密度ρ/(kg·m−3) 螺旋桨 集中 1.24×1011 0.33 7 500 0.87 6 525.00 大齿轮 集中 2.00×1011 0.30 7 850 — 7 850.00 艉轴 均布 2.00×1011 0.30 7 850 0.87 6 859.50 其余轴段 均布 2.00×1011 0.30 7 850 — 7 850.00 表 3 直线校中状态下各轴承状态参数
Table 3. The state parameters of each bearing for linear alignment
名称 挠度/mm 转角/rad 载荷/kN 剪应力/MPa 后艉轴承 −1.84700 −3.240 9×10−6 368.17 2.264 9 前艉轴承 −0.921 63 −2.134 3×10−5 184.47 1.637 4 艉轴管轴承 −0.582 14 −1.156 9×10−6 120.63 0.976 4 1号中间轴承 −0.289 20 −1.678 7×10−5 148.11 1.238 2 2号中间轴承 −0.454 40 1.634 7×10−6 130.70 0.905 1 3号中间轴承 −0.800 38 9.958 5×10−7 71.49 0.745 7 4号中间轴承 −0.886 64 −1.056 5×10−6 92.93 0.773 1 表 4 考虑螺旋桨水动力后各轴承状态参数
Table 4. State parameters of each bearing in consideration of propeller hydrodynamic force
名称 挠度/mm 转角/rad 载荷/kN 剪应力/MPa 后艉轴承 −0.806 26 3.3291×10−6 159.83 1.078 90 前艉轴承 −0.740 92 −4.867 9×10−6 148.44 0.799 23 艉轴管轴承 −0.465 52 −8.122 2×10−6 97.38 0.928 69 1号中间轴承 0.008 19 −2.694 6×10−6 158.12 1.521 70 2号中间轴承 −0.048 34 −1.406 0×10−6 99.88 0.831 32 3号中间轴承 −0.010 54 −6.081 2×10−6 107.09 0.911 37 4号中间轴承 0.004 69 −1.845 4×10−6 127.58 0.844 16 表 5 优化校中后各轴承状态参数
Table 5. State parameters of each bearing after alignment optimization
名称 挠度/mm 转角/rad 载荷/kN 剪应力/MPa 后艉轴承 −0.812 20 1.635 7×10−5 160.99 1.110 20 前艉轴承 −0.772 36 −9.703 2×10−6 154.71 0.773 66 艉轴管轴承 −0.655 02 −7.128 8×10−6 135.16 0.800 67 1号中间轴承 −0.585 43 −7.897 1×10−6 132.72 1.190 00 2号中间轴承 −0.854 27 −1.404 9×10−5 122.32 0.923 03 3号中间轴承 −1.214 80 2.286 5×10−5 119.44 2.237 80 4号中间轴承 −2.198 40 4.423 5×10−5 156.29 3.813 20 -
[1] 陈国钧, 曾凡明. 现代舰船轮机工程[M]. 长沙: 国防科技大学出版社, 2001: 545-553.CHEN G J, ZENG F M. Modern marine engineering[M]. Changsha: National University of Defense Science and Technology Press, 2001: 545-553 (in Chinese). [2] 刘金林, 曾凡明. 舰艇动力装置[M]. 武汉: 华中科技大学出版社, 2019: 66-78.LIU J L, ZENG F M. Marine power plant[M]. Wuhan: Huazhong University of Science and Technology Press, 2019: 66-78 (in Chinese). [3] 王贤峰, 周继良, 曾庆健. 螺旋桨水动力对轴系校中影响的研究[J]. 武汉水运工程学院学报, 1994, 18(1): 105–110.WANG X F, ZHOU J L, ZENG Q J. Influence of propeller loads on marine shaft alignment[J]. Journal of Wuhan University of Water Transportation Engineering, 1994, 18(1): 105–110 (in Chinese). [4] 周瑞平. 超大型船舶推进轴系校中理论研究[D]. 武汉: 武汉理工大学, 2005.ZHOU R P. The theoretic studies on the propulsion shafting alignment of ultra-large vessels[D]. Wuhan: Wuhan University of Technology, 2005 (in Chinese). [5] LEE J U. Application of strain gauge method for investigating influence of ship shaft movement by hydrodynamic propeller forces on shaft alignment[J]. Measurement, 2018, 121: 261–275. doi: 10.1016/j.measurement.2018.02.067 [6] 王伟吉, 吴炜, 张红岩. 计入螺旋桨水动力的轴系校中计算[J]. 船海工程, 2012, 41(2): 88–90,94. doi: 10.3963/j.issn.1671-7953.2012.02.024WANG W J, WU W, ZHANG H Y. Calculation of marine shaft alignment with propeller hydrodynamic force[J]. Ship & Ocean Engineering, 2012, 41(2): 88–90,94 (in Chinese). doi: 10.3963/j.issn.1671-7953.2012.02.024 [7] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.WANG F J. Computational fluid dynamics analysis: principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004 (in Chinese). [8] 景来钊. 螺旋桨激励下船舶推进轴系的多维耦合振动特性研究[D]. 济南: 山东大学, 2019.JING L Z. Research on multi-dimensional coupled vibration characteristics of ship propulsion shafting under propeller excitation[D]. Ji'nan: Shandong University, 2019 (in Chinese). [9] 李晓植. 螺旋桨盘面比对KCS船自航性能的影响研究[D]. 武汉: 华中科技大学, 2019.LI X Z. A study on the effect of propeller area ratio on self-propulsion of KCS model[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese). [10] 周瑞. 基于有限元的舰船推进轴系合理校中计算方法[J]. 中国舰船研究, 2012, 7(3): 74–78. doi: 10.3969/j.issn.1673-3185.2012.03.016ZHOU R. Calculation method for ship propulsion shaft-ing alignment based on finite element analysis[J]. Chinese Journal of Ship Research, 2012, 7(3): 74–78 (in Chinese). doi: 10.3969/j.issn.1673-3185.2012.03.016 [11] SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4): 656–667. doi: 10.1109/21.286385 [12] GUO J F, LI Y J, ZHANG K. Optimal time-frequency atom search based on adaptive genetic algorithm[J]. Journal of China Ordnance, 2008, 4(1): 30–35. [13] 陈超. 自适应遗传算法的改进研究及其应用[D]. 广州: 华南理工大学, 2011.CHEN C. The improved research and application of adaptive genetic algorithm[D]. Guangzhou: South China University of Technology, 2011 (in Chinese). -