留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强度聚氯乙烯泡沫水声模量参数反演修正

胡泊 吴崇建 何其健 肖伟 李磊鑫 李想

胡泊, 吴崇建, 何其健, 等. 高强度聚氯乙烯泡沫水声模量参数反演修正[J]. 中国舰船研究, 2023, 18(2): 107–113 doi: 10.19693/j.issn.1673-3185.02588
引用本文: 胡泊, 吴崇建, 何其健, 等. 高强度聚氯乙烯泡沫水声模量参数反演修正[J]. 中国舰船研究, 2023, 18(2): 107–113 doi: 10.19693/j.issn.1673-3185.02588
HU B, WU C J, HE Q J, et al. Parameter inversion and amendment of underwater acoustic modulus of high-strength PVC foam[J]. Chinese Journal of Ship Research, 2023, 18(2): 107–113 doi: 10.19693/j.issn.1673-3185.02588
Citation: HU B, WU C J, HE Q J, et al. Parameter inversion and amendment of underwater acoustic modulus of high-strength PVC foam[J]. Chinese Journal of Ship Research, 2023, 18(2): 107–113 doi: 10.19693/j.issn.1673-3185.02588

高强度聚氯乙烯泡沫水声模量参数反演修正

doi: 10.19693/j.issn.1673-3185.02588
详细信息
    作者简介:

    胡泊,男,1993年生,博士生,工程师

    吴崇建,男,1960年生,博士,研究员,博士生导师

    何其健,男,1983年生,硕士生

    通信作者:

    吴崇建

  • 中图分类号: U668.5

Parameter inversion and amendment of underwater acoustic modulus of high-strength PVC foam

知识共享许可协议
高强度聚氯乙烯泡沫水声模量参数反演修正胡泊,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在基于复合材料试样水声插入损失实测值,通过反演算法获得高强度聚氯乙烯(PVC)泡沫的水声模量值,进而提高复合材料水声插入损失计算精度。  方法  首先,通过压缩、平拉等力学试验,得到高强度PVC泡沫材料的静弹性模量,再利用传递矩阵方法计算得到夹芯复合材料的插入损失,并分析得出插入损失计算值与基于脉冲声管法的实测值存在较大差异的原因是芯材弹性模量输入值偏低。然后,基于插入损失实测值,采用遗传算法反演计算出5组泡沫材料的水声模量值。  结果  定量计算结果表明,高强度PVC泡沫的水声模量值高于静弹性模量值,水声模量对压缩模量比值的平均值为1.24,对拉伸模量比值的平均值为1.36。  结论  在对基于高强度PVC泡沫的夹芯复合材料水声性能进行计算时,材料弹性模量输入值应在静力模量实测值基础上正向修正,从而降低误差。
  • 图  多层介质传递矩阵原理

    Figure  1.  Transfer matrix theory of multi-layer medium

    图  VS1~VS5泡沫材料试样的应力−应变曲线

    Figure  2.  Stress-strain curves for foam samples VS1−VS5

    图  夹芯复合材料结构示意图

    Figure  3.  Structure of PVC foam-core sandwich composite

    图  VS-1~VS-5夹芯复合材料试样

    Figure  4.  Samples of sandwich composite with PVC foam-core VS-1−VS-5

    图  VS-1夹芯复合材料插入损失计算值与实测值对比

    Figure  5.  Comparison of calculated and measured insertion loss of VS-1 PVC foam-core sandwich composites

    图  遗传算法种群迭代进化示意图

    Figure  6.  Iterative evolution of genetic algorithm population

    图  VS1~VS5试样基于反演模量的插入损失计算值与实测值对比

    Figure  7.  Comparison of insertion loss between inverse modulus based calculation and measurement for samples VS-1−VS-5

    表  泡沫静弹性模量测试值

    Table  1.  Summary of test results for static elastic modulus of foam

    试样密度/(kg·m−3)压缩模量/MPa拉伸模量/MPa
    VS-1303.0635.2558.9
    VS-2303.9629.3627.7
    VS-3297.2614.3577.2
    VS-4315.9704.6582.0
    VS-5310.2626.8593.7
    下载: 导出CSV

    表  材料模量的反演值与测试值对比

    Table  2.  Summary of inversion and measured values for material modulus

    试样水声模量反演值/MPa压缩模量值/MPa拉伸模量值/MPa水声模量与压缩模量比值水声模量与拉伸模量比值
    VS-1806.8635.2558.91.2701.444
    VS-2801.7629.3627.71.2741.277
    VS-3704.5614.3577.21.1471.221
    VS-4856.9704.6582.01.2161.472
    VS-5813.4626.8593.71.2981.370
    下载: 导出CSV
  • [1] 马志超, 张用兵, 郭万涛, 等. 泡沫夹芯复合材料力学性能与水声性能综合设计初探[J]. 材料开发与应用, 2013, 28(3): 55–61 .

    MA Z C, ZHANG Y B, GUO W T, et al. An overall design of foam-core sandwich composite on mechanical and underwater acoustic properties[J]. Development and Application of Materials, 2013, 28(3): 55–61 (in Chinese).
    [2] 董云龙, 梅志远. 复合材料夹层板水下透声性能分析[J]. 中国舰船研究, 2019, 14(增刊 1): 121–125. doi: 10.19693/j.issn.1673-3185.01642

    DONG Y L, MEI Z Y. Analysis on underwater sound transmission properties of composite sandwich plates[J]. Chinese Journal of Ship Research, 2019, 14(Supp 1): 121–125 (in Chinese). doi: 10.19693/j.issn.1673-3185.01642
    [3] 吕志强. 声学材料斜入射吸声性能测试方法研究[D]. 北京: 中国舰船研究院, 2018.

    LV Z Q. Measurement method of sound absorption properties of acoustic materials with oblique incidence[D]. Beijing: China Ship Research and Development Academy, 2018 (in Chinese).
    [4] 徐坤. 功能梯度材料平板力学与声学特性研究[D]. 武汉: 华中科技大学, 2016.

    XU K. Research on mechanical and acoustic properties of functionally graded material Panels[D]. Wuhan: Huazhong University of Science and Technology, 2016 (in Chinese).
    [5] 柯李菊, 刘成洋, 方智. 基于COMSOL的组合空腔结构声学覆盖层的声学性能分析[J]. 中国舰船研究, 2020, 15(5): 167–175,182. doi: 10.19693/j.issn.1673-3185.01673

    KE L J, LIU C Y, FANG Z. COMSOL-based acoustic performance analysis of combined cavity anechoic layer[J]. Chinese Journal of Ship Research, 2020, 15(5): 167–175,182 (in Chinese). doi: 10.19693/j.issn.1673-3185.01673
    [6] 胡泊. 反声复合材料指挥室围壳声目标强度研究[D]. 北京: 中国舰船研究院, 2017.

    HU B. Research on target strength of submarine sails made by sound-reflecting composites[D]. Beijing: China Ship Research and Development Academy, 2017 (in Chinese).
    [7] 张天航, 朱广平, 孙辉, 等. 脉冲声管系统中反演水声材料声学参数的软件研制[J]. 应用科技, 2018, 45(2): 6–10.

    ZHANG T H, ZHU G P, SUN H, et al. Research on the software of calculating parameters of the underwater acoustic materials in the pulse acoustic tube system[J]. Applied Science and Technology, 2018, 45(2): 6–10 (in Chinese).
    [8] 张天航. 基于反射声的材料参数反演研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    ZHANG T H. Research of material parameters inversion based on reflection[D]. Harbin: Harbin Engineering University, 2017 (in Chinese).
    [9] 宋扬. 中高频下粘弹性材料声学参数测量[D]. 哈尔滨: 哈尔滨工程大学, 2007.

    SONG Y. Acoustic parameter measurement of viscoelastic material at intermediate and high frequency[D]. Harbin: Harbin Engineering University, 2007(in Chinese).
    [10] 李水, 罗马奇, 范进良, 等. 水声材料低频声性能的行波管测量[J]. 声学学报, 2007, 32(4): 349–355.

    LI S, LUO M Q, FAN J L, et al. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials[J]. Acta Acustica, 2007, 32(4): 349–355 (in Chinese).
    [11] 陈建平, 何元安, 黄爱根. 水声材料声学参数及其声管测量方法[J]. 声学技术, 2015, 34(2): 109–114.

    CHEN J P, HE Y A, HUANG A G. Summarization of acoustic parameters of underwater materials and the acoustic tube measurement method[J]. Technical Acoustics, 2015, 34(2): 109–114 (in Chinese).
    [12] 布列霍夫斯基赫 Л М. 分层介质中的波[M]. 杨训仁, 译. 北京: 科学出版社, 1960: 34-37.

    BREKHOVSKIKH L M. Wave in layered medium[M]. YANG X R, trans. Beijing: Science Press, 1960: 34-37 (in Chinese).
    [13] 许杨剑, 李翔宇, 王效贵. 基于遗传算法的功能梯度材料参数的反演分析[J]. 复合材料学报, 2013, 30(4): 170–176.

    XU Y J, LI X Y, WANG X G. Genetic algorithm based inverse analysis for functionally graded material parameters[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 170–176 (in Chinese).
    [14] 全国塑料制品标准化技术委员会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2008 [S]. . 北京: 中国标准出版社, 2008.

    National Technical Committee on Plastic Products of Standardization Administration of China. Rigid cellular plastics—determination of compression properties: GB/T 8813−2008 [S]. Beijing: China Standard Press, 2008 (in Chinese).
    [15] ASTM. Standard test method for compressive properties of rigid cellular plastics: ASTM D1621-16 [S]. Philadephia: American Society for Testing and Materials (ASTM), 2016 .
    [16] ASTM. Standard test method for tensile and tensile adhesion properties of rigid cellular plastics: ASTM D1621-17 [S]. Philadephia: American Society for Testing and Materials (ASTM), 2017.
    [17] 全国声学标准化技术委员会. 声学—水声材料样品插入损失、回声降低和吸声系数的测量方法 : GB/T 14369—2011 [S]. 北京: 中国标准出版社, 2012

    National Technical Committee on Acoustics of Standardization Administration of China. Acoustics—measurement methods of insertion loss, echo reduction and sound absorption coefficient for underwater acoustical material samples : GB/T 14369-2011 [S]. Beijing: China Standard Press, 2012 (in Chinese).
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  67
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-03-01
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回