Parameter inversion and amendment of underwater acoustic modulus of high-strength PVC foam
-
摘要:
目的 旨在基于复合材料试样水声插入损失实测值,通过反演算法获得高强度聚氯乙烯(PVC)泡沫的水声模量值,进而提高复合材料水声插入损失计算精度。 方法 首先,通过压缩、平拉等力学试验,得到高强度PVC泡沫材料的静弹性模量,再利用传递矩阵方法计算得到夹芯复合材料的插入损失,并分析得出插入损失计算值与基于脉冲声管法的实测值存在较大差异的原因是芯材弹性模量输入值偏低。然后,基于插入损失实测值,采用遗传算法反演计算出5组泡沫材料的水声模量值。 结果 定量计算结果表明,高强度PVC泡沫的水声模量值高于静弹性模量值,水声模量对压缩模量比值的平均值为1.24,对拉伸模量比值的平均值为1.36。 结论 在对基于高强度PVC泡沫的夹芯复合材料水声性能进行计算时,材料弹性模量输入值应在静力模量实测值基础上正向修正,从而降低误差。 Abstract:Objective The purpose of this paper is to obtain the hydro-acoustic modulus of high-strength polyvinyl chloride (PVC) foam through an inversion algorithm based on the measured underwater acoustic insertion loss values of the composite samples, then improve the calculation accuracy of the insertion loss of the composites. Methods First, the static elastic modulus of high-strength PVC foam is obtained through mechanical tests such as compression and tension, and then the insertion loss of the sandwich composite is calculated using the transfer-matrix method. The reason for the large difference in the calculated values and the measured values obtained by the acoustic pulse-based tube method is that the input value of the elastic modulus of the core material is low. Based on the measured insertion loss values, the underwater acoustic modulus values of five PVC foam samples are then calculated via genetic algorithm inversion. Results The quantitative calculation results indicate that the hydro-acoustic modulus value of high-strength PVC foam is higher than the measured static elastic modulus values. The average ratio of hydro-acoustic modulus to compressive modulus is 1.24, and that to tensile modulus is 1.36. Conclusion When calculating the hydro-acoustic performance of sandwich composites containing high-strength PVC foam, the error can be reduced by positively correcting the input value of the material's elastic modulus on the basis of the measured value of the static modulus. -
Key words:
- PVC foam /
- insertion loss /
- genetic algorithm /
- elastic modulus /
- longitudinal wave velocity
-
表 1 泡沫静弹性模量测试值
Table 1. Summary of test results for static elastic modulus of foam
试样 密度/(kg·m−3) 压缩模量/MPa 拉伸模量/MPa VS-1 303.0 635.2 558.9 VS-2 303.9 629.3 627.7 VS-3 297.2 614.3 577.2 VS-4 315.9 704.6 582.0 VS-5 310.2 626.8 593.7 表 2 材料模量的反演值与测试值对比
Table 2. Summary of inversion and measured values for material modulus
试样 水声模量反演值/MPa 压缩模量值/MPa 拉伸模量值/MPa 水声模量与压缩模量比值 水声模量与拉伸模量比值 VS-1 806.8 635.2 558.9 1.270 1.444 VS-2 801.7 629.3 627.7 1.274 1.277 VS-3 704.5 614.3 577.2 1.147 1.221 VS-4 856.9 704.6 582.0 1.216 1.472 VS-5 813.4 626.8 593.7 1.298 1.370 -
[1] 马志超, 张用兵, 郭万涛, 等. 泡沫夹芯复合材料力学性能与水声性能综合设计初探[J]. 材料开发与应用, 2013, 28(3): 55–61 .MA Z C, ZHANG Y B, GUO W T, et al. An overall design of foam-core sandwich composite on mechanical and underwater acoustic properties[J]. Development and Application of Materials, 2013, 28(3): 55–61 (in Chinese). [2] 董云龙, 梅志远. 复合材料夹层板水下透声性能分析[J]. 中国舰船研究, 2019, 14(增刊 1): 121–125. doi: 10.19693/j.issn.1673-3185.01642DONG Y L, MEI Z Y. Analysis on underwater sound transmission properties of composite sandwich plates[J]. Chinese Journal of Ship Research, 2019, 14(Supp 1): 121–125 (in Chinese). doi: 10.19693/j.issn.1673-3185.01642 [3] 吕志强. 声学材料斜入射吸声性能测试方法研究[D]. 北京: 中国舰船研究院, 2018.LV Z Q. Measurement method of sound absorption properties of acoustic materials with oblique incidence[D]. Beijing: China Ship Research and Development Academy, 2018 (in Chinese). [4] 徐坤. 功能梯度材料平板力学与声学特性研究[D]. 武汉: 华中科技大学, 2016.XU K. Research on mechanical and acoustic properties of functionally graded material Panels[D]. Wuhan: Huazhong University of Science and Technology, 2016 (in Chinese). [5] 柯李菊, 刘成洋, 方智. 基于COMSOL的组合空腔结构声学覆盖层的声学性能分析[J]. 中国舰船研究, 2020, 15(5): 167–175,182. doi: 10.19693/j.issn.1673-3185.01673KE L J, LIU C Y, FANG Z. COMSOL-based acoustic performance analysis of combined cavity anechoic layer[J]. Chinese Journal of Ship Research, 2020, 15(5): 167–175,182 (in Chinese). doi: 10.19693/j.issn.1673-3185.01673 [6] 胡泊. 反声复合材料指挥室围壳声目标强度研究[D]. 北京: 中国舰船研究院, 2017.HU B. Research on target strength of submarine sails made by sound-reflecting composites[D]. Beijing: China Ship Research and Development Academy, 2017 (in Chinese). [7] 张天航, 朱广平, 孙辉, 等. 脉冲声管系统中反演水声材料声学参数的软件研制[J]. 应用科技, 2018, 45(2): 6–10.ZHANG T H, ZHU G P, SUN H, et al. Research on the software of calculating parameters of the underwater acoustic materials in the pulse acoustic tube system[J]. Applied Science and Technology, 2018, 45(2): 6–10 (in Chinese). [8] 张天航. 基于反射声的材料参数反演研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.ZHANG T H. Research of material parameters inversion based on reflection[D]. Harbin: Harbin Engineering University, 2017 (in Chinese). [9] 宋扬. 中高频下粘弹性材料声学参数测量[D]. 哈尔滨: 哈尔滨工程大学, 2007.SONG Y. Acoustic parameter measurement of viscoelastic material at intermediate and high frequency[D]. Harbin: Harbin Engineering University, 2007(in Chinese). [10] 李水, 罗马奇, 范进良, 等. 水声材料低频声性能的行波管测量[J]. 声学学报, 2007, 32(4): 349–355.LI S, LUO M Q, FAN J L, et al. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials[J]. Acta Acustica, 2007, 32(4): 349–355 (in Chinese). [11] 陈建平, 何元安, 黄爱根. 水声材料声学参数及其声管测量方法[J]. 声学技术, 2015, 34(2): 109–114.CHEN J P, HE Y A, HUANG A G. Summarization of acoustic parameters of underwater materials and the acoustic tube measurement method[J]. Technical Acoustics, 2015, 34(2): 109–114 (in Chinese). [12] 布列霍夫斯基赫 Л М. 分层介质中的波[M]. 杨训仁, 译. 北京: 科学出版社, 1960: 34-37.BREKHOVSKIKH L M. Wave in layered medium[M]. YANG X R, trans. Beijing: Science Press, 1960: 34-37 (in Chinese). [13] 许杨剑, 李翔宇, 王效贵. 基于遗传算法的功能梯度材料参数的反演分析[J]. 复合材料学报, 2013, 30(4): 170–176.XU Y J, LI X Y, WANG X G. Genetic algorithm based inverse analysis for functionally graded material parameters[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 170–176 (in Chinese). [14] 全国塑料制品标准化技术委员会. 硬质泡沫塑料压缩性能的测定: GB/T 8813—2008 [S]. . 北京: 中国标准出版社, 2008.National Technical Committee on Plastic Products of Standardization Administration of China. Rigid cellular plastics—determination of compression properties: GB/T 8813−2008 [S]. Beijing: China Standard Press, 2008 (in Chinese). [15] ASTM. Standard test method for compressive properties of rigid cellular plastics: ASTM D1621-16 [S]. Philadephia: American Society for Testing and Materials (ASTM), 2016 . [16] ASTM. Standard test method for tensile and tensile adhesion properties of rigid cellular plastics: ASTM D1621-17 [S]. Philadephia: American Society for Testing and Materials (ASTM), 2017. [17] 全国声学标准化技术委员会. 声学—水声材料样品插入损失、回声降低和吸声系数的测量方法 : GB/T 14369—2011 [S]. 北京: 中国标准出版社, 2012National Technical Committee on Acoustics of Standardization Administration of China. Acoustics—measurement methods of insertion loss, echo reduction and sound absorption coefficient for underwater acoustical material samples : GB/T 14369-2011 [S]. Beijing: China Standard Press, 2012 (in Chinese). -