Response of carbon fiber trapezoidal corrugated sandwich structure under air explosion loading
-
摘要:
目的 研究迎爆面和背爆面面板厚度、壁板折角以及芯层高度对碳纤维增强复合材料梯形波纹夹层结构抗爆性能的影响规律。 方法 首先,基于三维Hashin失效准则,利用软件ABAQUS中的VUMAT用户子程序接口,开发纤维增强复合材料损伤演化的子程序模块;然后,通过与公开文献中的实验进行对比,验证爆炸冲击载荷下基于所开发子程序的碳纤维增强复合材料动态响应仿真方法的有效性;最后,基于该数值方法开展碳纤维增强复合材料梯形波纹板的抗爆性能参数化研究。 结果 结果显示,相比增大迎爆面面板的厚度,增大背爆面面板厚度对夹层板抗爆性能的提升更为明显;芯层壁板折角从45°减小至30°时,其抗爆能力提高了1.3%,而当从60°减小至45°时,其抗爆能力提高了6.3%;芯层高度从8 mm增大至20 mm时,其抗爆能力提高了27.7%。 结论 所做研究可为碳纤维增强复合材料夹层结构的抗爆设计提供参考。 Abstract:Objectives The effects of the thickness of the face plate, angle of the wall plate and height of the core layer on the anti-explosion performance of carbon fiber reinforced composite trapezoidal corrugated sandwich structures were investigated. Methods First, based on the 3D Hashin failure criterion, a subroutine module of the damage evolution of fiber reinforced composites is developed using the VUMAT user subroutine interface in ABAQUS. Second, through comparison with experiments in the public literature, the effectiveness of the dynamic response simulation method of carbon fiber reinforced composites based on a development subroutine under explosion impact loading is verified. Finally, a parametric study on the explosion resistance of carbon fiber reinforced composite trapezoidal corrugated plates is carried out based on the numerical method. Results The results show that, compared with increasing the thickness of the blast face panel, increasing the thickness of the back blast face panel can improve the explosion resistance of the sandwich plate more obviously; when the folding angle of the core wall plate decreases from 45° to 30°, the explosion resistance increases by 1.3%; when it decreases from 60° to 45°, the explosion resistance increases by 6.3%; and when the core height increases from 8 mm to 20 mm, the explosion resistance increases by 27.7%. Conclusions The results of this study can provide references for the explosion-proof design of carbon fiber reinforced composite sandwich structures. -
Key words:
- composite /
- blast impact /
- trapezoidal corrugated plate /
- damage evolution /
- ABAQUS
-
表 1 平纹编织结构碳纤维层合板材料参数[13]
Table 1. Parameters of plain woven carbon fiber composite material laminates[13]
参数 数值 方向1弹性模量${E_{11}}$/GPa 62.3 方向2弹性模量${E_{22}}$/GPa 62.3 厚度方向弹性模量${E_{33}}$/GPa 8.5 泊松比${v_{12}}$,${v_{13} }$,${v_{23}}$ 0.06 剪切模量${G_{12}}$/GPa 7.1 剪切模量${G_{13}}$,${G_{23}}$/GPa 3 方向1拉伸强度${X_{\rm{t} } }$/MPa 610 方向1压缩强度${X_{\rm{c} } }$/MPa 314.7 方向2拉伸强度${Y_{\rm{t} } }$/MPa 610 方向2压缩强度${Y_{\rm{c} } }$/MPa 314.7 厚度方向拉伸强度${Z_{\rm{t} } }$/MPa 55.6 厚度方向压缩强度${Z_{\rm{c}}}$/MPa 500 剪切强度${S_{12}}$/MPa 101.7 剪切强度${S_{13}}$,${S_{23}}$/MPa 59.4 密度$\rho $/(kg·m−3) 1467 表 2 黏接单元材料参数[3]
Table 2. Cohesive element material parameters
参 数 数值 弹性模量 E11/GPa 4.3 G12/GPa 2.0 G13/GPa 2.0 失效应力 $ {\sigma }_{\mathrm{N}} $/MPa 100 ${\sigma }_{\mathrm{S} }$/MPa 80 ${\sigma }_{\mathrm{T} }$/MPa 80 断裂能 GN/(J·m−2) 1 500 GS/(J·m−2) 2 000 GT/(J·m−2) 2 000 参数 数值 密度/(kg·m−3) 1 770 $ A $/GPa 617.5 $ B $/GPa 16.9 $ {R}_{1} $ 4.4 $ {R}_{2} $ 1.2 $ \omega $ 0.25 爆轰速度V/(m·s−1) 7 100 初始内能$ {E}_{\mathrm{m}} $/(J·kg−1) 5.707×106 注:A,B,R1,R2,ω为JWL状态方程参数。 参数 数值 密度/(kg·m−3) 1.225 大气压强/Pa 1.013×105 体积常数R 287.05 初始温度$ \theta $/℃ 20 绝对零度$ {\theta }_{\mathrm{z}} $/℃ −273 表 5 梯形波纹板结构参数设计
Table 5. Structural parameter design of trapezoidal corrugated plate
工况 迎爆面面板厚tf /mm 背爆面面板厚tb /mm 芯层高Hc /mm 芯层壁板折角θ/(°) 单位面积相对质量 TC-1 1.56 1.56 14 45 1.00 TC-2 0.78 1.56 14 45 0.81 TC-3 2.34 1.56 14 45 1.19 TC-4 1.56 0.78 14 45 0.81 TC-5 1.56 2.34 14 45 1.19 TC-6 1.56 1.56 14 30 0.97 TC-7 1.56 1.56 14 60 1.05 TC-8 1.56 1.56 8 45 0.99 TC-9 1.56 1.56 20 45 1.01 -
[1] YAZID YAHYA M, CANTWELL W J, LANGDON G S, et al. The blast resistance of a woven carbon fiber-reinforced epoxy composite[J]. Journal of Composite Materials, 2011, 45(7): 789–801. doi: 10.1177/0021998310376103 [2] LANGDON G S, CANTWELL W J, GUAN Z W, et al. The response of polymeric composite structures to air-blast loading: a state-of-the-art[J]. International Materials Reviews, 2014, 59(3): 159–177. doi: 10.1179/1743280413Y.0000000028 [3] LANGDON G S, KARAGIOZOVA D, von KLEMPERER C J, et al. The air-blast response of sandwich panels with composite face sheets and polymer foam cores: experiments and predictions[J]. International Journal of Impact Engineering, 2013, 54: 64–82. doi: 10.1016/j.ijimpeng.2012.10.015 [4] LANGDON G S, von KLEMPERER C J, ROWLAND B K, et al. The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: preliminary experiments[J]. Engineering Structures, 2012, 36: 104–112. doi: 10.1016/j.engstruct.2011.11.023 [5] XIN S H, WEN H M. A progressive damage model for fiber reinforced plastic composites subjected to impact loading[J]. International Journal of Impact Engineering, 2015, 75: 40–52. doi: 10.1016/j.ijimpeng.2014.07.014 [6] XIN S H, WEN H M. Numerical study on the perforation of fiber reinforced plastic laminates struck by high velocity projectiles[J]. The Journal of Strain Analysis for Engineering Design, 2012, 47(7): 513–523. doi: 10.1177/0309324712454650 [7] 赵延杰, 郝轶, 刘建湖, 等. 水下接触爆炸作用下泡沫夹芯板耗能机理研究[J]. 中国舰船研究, 2018, 13(3): 13–22. doi: 10.19693/j.issn.1673-3185.01168ZHAO Y J, HAO Y, LIU J H, et al. Energy dissipation mechanism of foam sandwich plate subjected to contact underwater explosion[J]. Chinese Journal of Ship Research, 2018, 13(3): 13–22 (in Chinese). doi: 10.19693/j.issn.1673-3185.01168 [8] 李春鹏, 张攀, 刘均, 等. 空爆载荷下功能梯度泡沫铝夹层板动响应数值仿真[J]. 中国舰船研究, 2018, 13(3): 77–84. doi: 10.19693/j.issn.1673-3185.01172LI C P, ZHANG P, LIU J, et al. Numerical simulation of dynamic response of functionally graded aluminum foam sandwich panels under air blast loading[J]. Chinese Journal of Ship Research, 2018, 13(3): 77–84 (in Chinese). doi: 10.19693/j.issn.1673-3185.01172 [9] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664 [10] GARGANO A, DAS R, MOURITZ A P. Finite element modelling of the explosive blast response of carbon fibre-polymer laminates[J]. Composites Part B: Engineering, 2019, 177: 107412. doi: 10.1016/j.compositesb.2019.107412 [11] MOURITZ A P. Advances in understanding the response of fibre-based polymer composites to shock waves and explosive blasts[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105502. doi: 10.1016/j.compositesa.2019.105502 [12] YE L. Role of matrix resin in delamination onset and grow-th in composite laminates[J]. Composites Science and Technology, 1988, 33(4): 257–277. doi: 10.1016/0266-3538(88)90043-7 [13] GARGANO A, DONOUGH M, DAS R, et al. Damage to fibre-polymer laminates caused by surface contact explosive charges[J]. Composites Part B: Engineering, 2020, 197: 108162. doi: 10.1016/j.compositesb.2020.108162 [14] 周天宇. 近场/接触爆炸载荷下PVC泡沫夹芯结构动态响应和失效机理研究[D]. 武汉: 华中科技大学, 2019.ZHOU T Y. Research on dynamic response and failure mechanism of PVC foam sandwich structures under near-field and contact blast loadings[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese). -
ZG2573_en.pdf
-