留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空爆载荷下碳纤维梯形波纹夹芯结构响应分析

章帅帅 刘均 张攀 程远胜

章帅帅, 刘均, 张攀, 等. 空爆载荷下碳纤维梯形波纹夹芯结构响应分析[J]. 中国舰船研究, 2023, 18(2): 28–37 doi: 10.19693/j.issn.1673-3185.02573
引用本文: 章帅帅, 刘均, 张攀, 等. 空爆载荷下碳纤维梯形波纹夹芯结构响应分析[J]. 中国舰船研究, 2023, 18(2): 28–37 doi: 10.19693/j.issn.1673-3185.02573
ZHANG S S, LIU J, ZHANG P, et al. Response of carbon fiber trapezoidal corrugated sandwich structure under air explosion loading[J]. Chinese Journal of Ship Research, 2023, 18(2): 28–37 doi: 10.19693/j.issn.1673-3185.02573
Citation: ZHANG S S, LIU J, ZHANG P, et al. Response of carbon fiber trapezoidal corrugated sandwich structure under air explosion loading[J]. Chinese Journal of Ship Research, 2023, 18(2): 28–37 doi: 10.19693/j.issn.1673-3185.02573

空爆载荷下碳纤维梯形波纹夹芯结构响应分析

doi: 10.19693/j.issn.1673-3185.02573
详细信息
    作者简介:

    章帅帅,男,1996年生,硕士生。研究方向:爆炸冲击动力学。E-mail:1944736757@qq.com

    刘均,男,1981年生,博士,副教授。研究方向:结构分析与轻量化设计,结构振动与抗冲击分析。E-mail:hustlj@hust.edu.cn

    张攀,男,1986年生,博士,副教授。研究方向:结构优化设计和抗爆抗冲击。E-mail:panzhang@hust.edu.cn

    程远胜,男,1962年生,博士,教授,博士生导师。研究方向:船舶海洋结构优化设计。E-mail:yscheng@hust.edu.cn

    通信作者:

    刘均

  • 中图分类号: U661.5;U668.5

Response of carbon fiber trapezoidal corrugated sandwich structure under air explosion loading

知识共享许可协议
空爆载荷下碳纤维梯形波纹夹芯结构响应分析章帅帅,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  研究迎爆面和背爆面面板厚度、壁板折角以及芯层高度对碳纤维增强复合材料梯形波纹夹层结构抗爆性能的影响规律。  方法  首先,基于三维Hashin失效准则,利用软件ABAQUS中的VUMAT用户子程序接口,开发纤维增强复合材料损伤演化的子程序模块;然后,通过与公开文献中的实验进行对比,验证爆炸冲击载荷下基于所开发子程序的碳纤维增强复合材料动态响应仿真方法的有效性;最后,基于该数值方法开展碳纤维增强复合材料梯形波纹板的抗爆性能参数化研究。  结果  结果显示,相比增大迎爆面面板的厚度,增大背爆面面板厚度对夹层板抗爆性能的提升更为明显;芯层壁板折角从45°减小至30°时,其抗爆能力提高了1.3%,而当从60°减小至45°时,其抗爆能力提高了6.3%;芯层高度从8 mm增大至20 mm时,其抗爆能力提高了27.7%。  结论  所做研究可为碳纤维增强复合材料夹层结构的抗爆设计提供参考。
  • 图  爆炸载荷下碳纤维复合材料梯形波纹板的数值模型

    Figure  1.  Numerical model of carbon fiber composite trapezoidal corrugated plate under explosion loadings

    图  碳纤维复合材料层合板数值模型

    Figure  2.  Numerical model of carbon fiber reinfored composite laminates

    图  实验与仿真结果对比[1]

    Figure  3.  Comparison of experimental and simulation results[1]

    图  梯形波纹板在爆炸冲击载荷下动态响应过程

    Figure  4.  Dynamic response process of trapezoidal corrugated plate under explosion shock loadings

    图  两侧面板变形、速度时程曲线

    Figure  5.  Time histories of deformation and velocity of panel

    图  纤维增强复合材料梯形波纹板的损伤

    Figure  6.  Damage of fiber reinforced composite trapezoidal corrugated plate

    图  不同迎爆面面板厚度梯形波纹板的响应

    Figure  7.  Response of trapezoidal corrugated plate with different blast face panel thickness

    图  不同背爆面面板厚度梯形波纹板的响应

    Figure  8.  Response of trapezoidal corrugated plate with different back blast face panel thickness

    图  不同面板厚度梯形波纹板的最大变形曲线

    Figure  9.  Maximum deformation curves of trapezoidal corrugated plate with different panel thickness

    图  10  不同壁板折角的梯形波纹板的响应

    Figure  10.  Response of trapezoidal corrugated plate with different folding angles

    图  11  不同芯层高度的梯形波纹板的响应

    Figure  11.  Response of trapezoidal corrugated plate with different core heights

    表  平纹编织结构碳纤维层合板材料参数[13]

    Table  1.  Parameters of plain woven carbon fiber composite material laminates[13]

    参数数值
    方向1弹性模量${E_{11}}$/GPa62.3
    方向2弹性模量${E_{22}}$/GPa62.3
    厚度方向弹性模量${E_{33}}$/GPa8.5
    泊松比${v_{12}}$,${v_{13} }$,${v_{23}}$0.06
    剪切模量${G_{12}}$/GPa7.1
    剪切模量${G_{13}}$,${G_{23}}$/GPa3
    方向1拉伸强度${X_{\rm{t} } }$/MPa610
    方向1压缩强度${X_{\rm{c} } }$/MPa314.7
    方向2拉伸强度${Y_{\rm{t} } }$/MPa610
    方向2压缩强度${Y_{\rm{c} } }$/MPa314.7
    厚度方向拉伸强度${Z_{\rm{t} } }$/MPa55.6
    厚度方向压缩强度${Z_{\rm{c}}}$/MPa500
    剪切强度${S_{12}}$/MPa101.7
    剪切强度${S_{13}}$,${S_{23}}$/MPa59.4
    密度$\rho $/(kg·m−3)1467
    下载: 导出CSV

    表  黏接单元材料参数[3]

    Table  2.  Cohesive element material parameters

    参 数数值
    弹性模量E11/GPa4.3
    G12/GPa2.0
    G13/GPa2.0
    失效应力$ {\sigma }_{\mathrm{N}} $/MPa100
    ${\sigma }_{\mathrm{S} }$/MPa80
    ${\sigma }_{\mathrm{T} }$/MPa80
    断裂能GN/(J·m−2)1 500
    GS/(J·m−2)2 000
    GT/(J·m−2)2 000
    下载: 导出CSV

    表  PE4炸药JWL状态方程参数[13]

    Table  3.  PE4 explosive JWL state equation parameters[13]

    参数数值
    密度/(kg·m−3)1 770
    $ A $/GPa617.5
    $ B $/GPa16.9
    $ {R}_{1} $4.4
    $ {R}_{2} $1.2
    $ \omega $0.25
    爆轰速度V/(m·s−1)7 100
    初始内能$ {E}_{\mathrm{m}} $/(J·kg−1)5.707×106
    注:ABR1R2ω为JWL状态方程参数。
    下载: 导出CSV

    表  空气气体状态方程参数[14]

    Table  4.  Air gas state equation parameters[14]

    参数数值
    密度/(kg·m−3)1.225
    大气压强/Pa1.013×105
    体积常数R287.05
    初始温度$ \theta $/℃20
    绝对零度$ {\theta }_{\mathrm{z}} $/℃−273
    下载: 导出CSV

    表  梯形波纹板结构参数设计

    Table  5.  Structural parameter design of trapezoidal corrugated plate

    工况迎爆面面板厚tf /mm背爆面面板厚tb /mm芯层高Hc /mm芯层壁板折角θ/(°)单位面积相对质量
    TC-11.561.5614451.00
    TC-20.781.5614450.81
    TC-32.341.5614451.19
    TC-41.560.7814450.81
    TC-51.562.3414451.19
    TC-61.561.5614300.97
    TC-71.561.5614601.05
    TC-81.561.568450.99
    TC-91.561.5620451.01
    下载: 导出CSV
  • [1] YAZID YAHYA M, CANTWELL W J, LANGDON G S, et al. The blast resistance of a woven carbon fiber-reinforced epoxy composite[J]. Journal of Composite Materials, 2011, 45(7): 789–801. doi: 10.1177/0021998310376103
    [2] LANGDON G S, CANTWELL W J, GUAN Z W, et al. The response of polymeric composite structures to air-blast loading: a state-of-the-art[J]. International Materials Reviews, 2014, 59(3): 159–177. doi: 10.1179/1743280413Y.0000000028
    [3] LANGDON G S, KARAGIOZOVA D, von KLEMPERER C J, et al. The air-blast response of sandwich panels with composite face sheets and polymer foam cores: experiments and predictions[J]. International Journal of Impact Engineering, 2013, 54: 64–82. doi: 10.1016/j.ijimpeng.2012.10.015
    [4] LANGDON G S, von KLEMPERER C J, ROWLAND B K, et al. The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: preliminary experiments[J]. Engineering Structures, 2012, 36: 104–112. doi: 10.1016/j.engstruct.2011.11.023
    [5] XIN S H, WEN H M. A progressive damage model for fiber reinforced plastic composites subjected to impact loading[J]. International Journal of Impact Engineering, 2015, 75: 40–52. doi: 10.1016/j.ijimpeng.2014.07.014
    [6] XIN S H, WEN H M. Numerical study on the perforation of fiber reinforced plastic laminates struck by high velocity projectiles[J]. The Journal of Strain Analysis for Engineering Design, 2012, 47(7): 513–523. doi: 10.1177/0309324712454650
    [7] 赵延杰, 郝轶, 刘建湖, 等. 水下接触爆炸作用下泡沫夹芯板耗能机理研究[J]. 中国舰船研究, 2018, 13(3): 13–22. doi: 10.19693/j.issn.1673-3185.01168

    ZHAO Y J, HAO Y, LIU J H, et al. Energy dissipation mechanism of foam sandwich plate subjected to contact underwater explosion[J]. Chinese Journal of Ship Research, 2018, 13(3): 13–22 (in Chinese). doi: 10.19693/j.issn.1673-3185.01168
    [8] 李春鹏, 张攀, 刘均, 等. 空爆载荷下功能梯度泡沫铝夹层板动响应数值仿真[J]. 中国舰船研究, 2018, 13(3): 77–84. doi: 10.19693/j.issn.1673-3185.01172

    LI C P, ZHANG P, LIU J, et al. Numerical simulation of dynamic response of functionally graded aluminum foam sandwich panels under air blast loading[J]. Chinese Journal of Ship Research, 2018, 13(3): 77–84 (in Chinese). doi: 10.19693/j.issn.1673-3185.01172
    [9] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664
    [10] GARGANO A, DAS R, MOURITZ A P. Finite element modelling of the explosive blast response of carbon fibre-polymer laminates[J]. Composites Part B: Engineering, 2019, 177: 107412. doi: 10.1016/j.compositesb.2019.107412
    [11] MOURITZ A P. Advances in understanding the response of fibre-based polymer composites to shock waves and explosive blasts[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105502. doi: 10.1016/j.compositesa.2019.105502
    [12] YE L. Role of matrix resin in delamination onset and grow-th in composite laminates[J]. Composites Science and Technology, 1988, 33(4): 257–277. doi: 10.1016/0266-3538(88)90043-7
    [13] GARGANO A, DONOUGH M, DAS R, et al. Damage to fibre-polymer laminates caused by surface contact explosive charges[J]. Composites Part B: Engineering, 2020, 197: 108162. doi: 10.1016/j.compositesb.2020.108162
    [14] 周天宇. 近场/接触爆炸载荷下PVC泡沫夹芯结构动态响应和失效机理研究[D]. 武汉: 华中科技大学, 2019.

    ZHOU T Y. Research on dynamic response and failure mechanism of PVC foam sandwich structures under near-field and contact blast loadings[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
  • ZG2573_en.pdf
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  1545
  • HTML全文浏览量:  159
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2022-02-23
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回