张强, 朱雅萍, 孟祥飞, 等. 欠驱动船舶自适应神经网络有限时间轨迹跟踪[J]. 中国舰船研究, 2022, 17(4): 24–31. doi: 10.19693/j.issn.1673-3185.02564
引用本文: 张强, 朱雅萍, 孟祥飞, 等. 欠驱动船舶自适应神经网络有限时间轨迹跟踪[J]. 中国舰船研究, 2022, 17(4): 24–31. doi: 10.19693/j.issn.1673-3185.02564
ZHANG Q, ZHU Y P, MENG X F, et al. Finite time trajectory tracking of underactuated ship based on adaptive neural network[J]. Chinese Journal of Ship Research, 2022, 17(4): 24–31. doi: 10.19693/j.issn.1673-3185.02564
Citation: ZHANG Q, ZHU Y P, MENG X F, et al. Finite time trajectory tracking of underactuated ship based on adaptive neural network[J]. Chinese Journal of Ship Research, 2022, 17(4): 24–31. doi: 10.19693/j.issn.1673-3185.02564

欠驱动船舶自适应神经网络有限时间轨迹跟踪

Finite time trajectory tracking of underactuated ship based on adaptive neural network

  • 摘要:
      目的  针对欠驱动水面船舶在轨迹跟踪控制中存在的动态不确定和未知扰动问题,设计一种自适应神经网络有限时间轨迹跟踪控制方案。
      方法  利用运动学虚拟控制律变换和有界限制的方法进行欠驱动变化。在Backstepping的框架下,利用神经网络重构未知动态,并设计自适应律逼近未知扰动的上界。通过Lyapunov直接法提供严格的理论分析,以证明闭环系统所有信号都是有界的,并使跟踪误差收敛至有界的区间。
      结果  仿真结果表明,所提控制方案能够使欠驱动船舶在有限的时间内跟踪上期望的轨迹,且相比传统控制方案,系统误差的收敛速度更快,误差的上、下界也更小,在面对外界未知的时变干扰时还具有良好的鲁棒性。
      结论  所做研究可为船舶的轨迹跟踪控制提供有效参考,具有实际的工程意义。

     

    Abstract:
      Objective  Aiming at the problems of dynamic uncertainty and unknown disturbance in the trajectory tracking control of underactuated surface ships, an adaptive neural network finite time trajectory tracking control scheme is designed.
      Method  The underactuated variation is carried out using the method of kinematic virtual control law transformation and bounded constraints. Under the framework of Backstepping, neural networks are used to reconstruct unknown dynamics, and an adaptive law is designed to approach the upper bound of unknown disturbances. The Lyapunov direct method provides a rigorous theoretical analysis which proves that all the signals of the closed-loop system are bounded, and the tracking error converges to a bounded interval.
      Results  The simulation results show that this control scheme can make an underactuated ship track the desired trajectory in a limited time, the convergence speed of the system error is faster than that of the traditional control scheme, and the upper and lower bounds of the error are also smaller. It also shows good robustness in the face of unknown time-varying interference from the outside world.
      Conclusion  The results of this study can provide valuable references for the tracking and control of ship trajectories, giving it great practical engineering significance.

     

/

返回文章
返回