Experimental research on dynamic vibration absorber with negative stiffness for longitudinal vibration control of propulsion shafting system
-
摘要:
目的 针对推进轴系一阶纵向振动控制难题,采用碟簧负刚度动力吸振器进行振动控制并进行试验验证。 方法 建立推进轴系纵向振动负刚度动力吸振器试验台架,根据所需控制的轴系一阶纵振模态,设计并研制负刚度动力吸振推力轴承,然后开展不同转速、不同静推力、不同负刚度下的振动传递试验,从而获得推力轴承基座和轴系上的振动加速度响应数据。 结果 结果显示,所研制的负刚度动力吸振推力轴承能以1.6%的吸振器质量使轴承座上一阶纵振轴系的振动响应下降7.8 dB;在轴系固有频率变化5%、静推力变化40%的情况下,负刚度动力吸振器仍能保证3.3 dB的控制效果;在非最优负刚度下,不会恶化轴系和轴承座的振动响应。 结论 研究表明负刚度动力吸振可有效抑制不同转速下轴系一阶纵振处的振动传递。 Abstract:Objectives In order to control the first longitudinal vibration mode of propulsion shafting systems, a dynamic vibration absorber with disc spring negative stiffness is proposed and its experimental verification carried out. Methods A test bench is established for the propulsion shafting system containing a dynamic vibration absorber with negative stiffness. According to the first longitudinal vibration mode of the shafting, a dynamic vibration absorber with negative stiffness integrated into the thrust bearing is developed. Vibration transmission tests under different rotational speeds, static thrusts and negative stiffness are then carried out, and acceleration response data on the thrust bearing foundation and shafting is obtained. Results The results show that the developed dynamic vibration absorber with negative stiffness can achieve vibration suppression of 7.8 dB for the thrust bearing foundation in the first longitudinal mode of the propulsion shafting with a mass ratio of 1.6%, and the vibration control effect of the negative stiffness dynamic vibration absorber is maintained at 3.3 dB when the natural frequency changes by 5% and the thrust changes by 40%. The vibration response on the thrust bearing foundation and shafting do not deteriorate even at non-optimal negative stiffness. Conclusions This study shows that a dynamic vibration absorber with negative stiffness can effectively suppress vibration transmission at the first longitudinal mode of a shafting under different rotational speeds. -
表 1 试验台架参数
Table 1. Parameters for the test bench
轴系旋转质量/kg 200 r/min推力轴承刚度/(N·m−1) 负刚度动力吸振器 质量比/% 质量/kg 阻尼比 刚度/(N·m−1) 最优负刚度/(N·m−1) 260 2.65×108 4.2 ≈ 0.26 1.21×107 −1.08×107 1.6 -
[1] 李全超, 刘伟, 俞强. 船舶集成式推力轴承减振器研究与应用[J]. 舰船科学技术, 2016, 38(11): 53–56.LI Q C, LIU W, YU Q. Research on vibration reduction of thrust bearing[J]. Ship Science and Technology, 2016, 38(11): 53–56 (in Chinese). [2] LIU N N, LI C Y, YIN C Y, et al. Application of a dynamic antiresonant vibration isolator to minimize the vibration transmission in underwater vehicles[J]. Journal of Vibration and Control, 2018, 24(17): 3819–3829. doi: 10.1177/1077546317711538 [3] SONG Y B, WEN J H, YU D L, et al. Reduction of vibration and noise radiation of an underwater vehicle due to propeller forces using periodically layered isolators[J]. Journal of Sound and Vibration, 2014, 333(14): 3031–3043. doi: 10.1016/j.jsv.2014.02.002 [4] 李全超, 刘伟. 基于主动推力平衡原理的轴系纵向减振技术研究[J]. 舰船科学技术, 2020, 42(1): 136–139. doi: 10.3404/j.issn.1672-7649.2020.01.027LI Q C, LIU W. Researd on longitudinal vibration control technology of marine shafting based on active thrust balance principle[J]. Ship Science and Technology, 2020, 42(1): 136–139 (in Chinese). doi: 10.3404/j.issn.1672-7649.2020.01.027 [5] GOODWIN A J H. The design of a resonance changer to overcome excessive axial vibration of propeller shafting[J]. Transactions of the Institute of Marine Engineers, 1960, 72: 37–62. [6] MERZ S, KESSISSOGLOU N, KINNS R, et al. Minimisation of the sound power radiated by a submarine through optimisation of its resonance changer[J]. Journal of Sound and Vibration, 2010, 329(8): 980–993. doi: 10.1016/j.jsv.2009.10.019 [7] 储炜, 赵耀, 张赣波, 等. 共振转换器的动力反共振隔振理论与应用[J]. 船舶力学, 2016, 20(1/2): 222–230.CHU W, ZHAO Y, ZHANG G B, et al. Dynamic anti-resonance vibration isolation theory of resonance changer and application[J]. Journal of Ship Mechanics, 2016, 20(1/2): 222–230 (in Chinese). [8] 李良伟, 赵耀. 船舶轴系共振转换器的非线性振动特性研究[J]. 中国造船, 2011, 52(4): 74–82. doi: 10.3969/j.issn.1000-4882.2011.04.008LI L W, ZHAO Y. Research on longitudinal nonlinear vibration characteristic of marine shafting resonance changer[J]. Shipbuilding of China, 2011, 52(4): 74–82 (in Chinese). doi: 10.3969/j.issn.1000-4882.2011.04.008 [9] 孟浩. 基于声子晶体理论的潜艇推进轴系纵向减振技术研究[D]. 长沙: 国防科学技术大学, 2007.MENG H. Research on axial vibration reduction of submarine propelling shafts based on phononic crystal theory[D]. Changsha: National University of Defense Technology, 2007 (in Chinese). [10] 刘耀宗, 王宁, 孟浩, 等. 基于动力吸振器的潜艇推进轴系轴向减振研究[J]. 振动与冲击, 2009, 28(5): 184–187. doi: 10.3969/j.issn.1000-3835.2009.05.043LIU Y Z, WANG N, MENG H, et al. Design of dynamic vibration absorbers to reduce axial vibration of propelling shafts of submarines[J]. Journal of Vibration and Shock, 2009, 28(5): 184–187 (in Chinese). doi: 10.3969/j.issn.1000-3835.2009.05.043 [11] 王家盛. 基于原理模型的潜艇推进轴系纵向减振技术实验研究[D]. 长沙: 国防科学技术大学, 2009.WANG J S. Research on axial vibration reduction of submarine propelling shafting based on theoretical model by experiments[D]. Changsha: National University of Defense Technology, 2009 (in Chinese). [12] 姚冰. 颗粒阻尼建模仿真及工程应用[D]. 南京: 南京航空航天大学, 2013.YAO B. Modeling and simulation of particle damping and its engineering applications[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). [13] HUANG X C, SU Z W, HUA H X. Application of a dynamic vibration absorber with negative stiffness for control of a marine shafting system[J]. Ocean Engineering, 2018, 155: 131–143. doi: 10.1016/j.oceaneng.2018.02.047 [14] 杨志荣. 舰艇轴系纵振特性及基于磁流变弹性体的半主动控制技术研究[D]. 上海: 上海交通大学, 2014.YANG Z R. Research on longitudinal vibration characteristics of warship shafting and its semi-active control technology based on magnetorheological elastomers[D]. Shanghai: Shanghai Jiaotong University, 2014 (in Chinese). [15] PAN X, TSO Y, JUNIPER R. Active control of radiated pressure of a submarine hull[J]. Journal of Sound and Vibration, 2008, 311(1/2): 224–242. [16] PAN X, TSO Y, JUNIPER R. Active control of low-frequency hull-radiated noise[J]. Journal of Sound and Vibration, 2008, 313(1/2): 29–45. [17] CARESTA M, KESSISSOGLOU N. Active control of sound radiated by a submarine hull in axisymmetric vibration using inertial actuators[J]. Journal of Vibration and Acoustics, 2012, 134(1): 011002. doi: 10.1115/1.4004673 [18] CARESTA M. Active control of sound radiated by a submarine in bending vibration[J]. Journal of Sound and Vibration, 2011, 330(4): 615–624. doi: 10.1016/j.jsv.2010.09.006 [19] LEWIS D W, ALLAIRE P E, THOMAS P W. Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems part 1: system natural frequencies and laboratory scale model[J]. Tribology Transactions, 1989, 32(2): 170–178. doi: 10.1080/10402008908981876 [20] LEWIS D W, HUMPHRIS R R, THOMAS P W. Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems part 2: control analysis and response of experimental system[J]. Tribology Transactions, 1989, 32(2): 179–188. doi: 10.1080/10402008908981877 [21] BAZ A, GILHEANY J, STEIMEL P. Active vibration control of propeller shafts[J]. Journal of Sound and Vibration, 1990, 136(3): 361–372. doi: 10.1016/0022-460X(90)90450-E [22] ZHANG Z Y, RUSTIGHI E, CHEN Y, et al. Active control of the longitudinal-lateral vibration of a shaft-plate coupled system[J]. Journal of Vibration and Acoustics, 2012, 134(6): 061002. doi: 10.1115/1.4006647 [23] 胡芳. 推进轴系纵向振动主动控制方法研究[D]. 上海: 上海交通大学, 2015.HU F. Research on active control of the longitudinal vibration of propulsion shafting system[D]. Shanghai: Shanghai Jiaotong University, 2015 (in Chinese). [24] 黄志伟. 推进轴系纵向振动主动控制技术综述[J]. 舰船科学技术, 2018, 40(11): 1–8. doi: 10.3404/j.issn.1672-7649.2018.11.001HUANG Z W. A review of active control the longitudinal vibration of propulsion shaft system[J]. Ship Science and Technology, 2018, 40(11): 1–8 (in Chinese). doi: 10.3404/j.issn.1672-7649.2018.11.001 -
ZG2559_en.pdf
-