Experimental study of drillship resistance performance in open and closed state of moonpool
-
摘要:
目的 为分析多功能钻井船月池封闭或开放状态下月池结构对船体阻力性能的影响,开展带月池结构的钻井船模型水池试验。 方法 以某多功能钻井船为例,研究在规则波和不规则波下的船舶运动响应。试验中,通过挂钩连接拉力传感器测量船模在静水和波浪中的阻力,利用加速度传感器分析船首、舯和船尾的加速度特性。 结果 结果表明:在轻载工况及月池开放时,船舶阻力较大; 在设计载重工况及月池封闭时,船舶静水阻力较大。在规则波下,月池封闭使船尾加速度降低了58.2%,船首阻力降低了46.7%, 垂荡运动响应最大幅值减小41.8%;在不规则波下,船首阻力峰值约为船尾的10倍,相比于月池封闭时,在相同时间内月池开放时阻力峰值出现的次数更多。 结论 研究表明,设计载重工况的差异使船体水线面面积改变,影响了船舶静水阻力,而月池封闭不仅降低了船舶运动加速度及阻力,而且有效改善了纵摇及垂荡运动响应幅值,这为带月池结构的钻井船结构型式的设计提供了数据支撑。 Abstract:Objective This paper carries out an experimental study of a multi-function dirllship model with moonpool structure in towing tank, aiming at analyzing the effects of the moonpool structure on the ship resistance in open and closure condition. Methods Taking a dirllship as the research object, the ship motion response in regular and irregular waves is investigated. The resistance of the ship in hydrostatic water and waves is measured with tension sensors, and the acceleration characteristics of the bow, midship and stern are analyzed by acceleration sensors. Results The results indicate that hull resistance under light load conditions is greater when open moonpool, while hydrostatic water resistance with closed moonpool is greater under design load conditions. The closed moonpool in regular waves reduces stern acceleration by 58.2%, bow resistance by 46.7% and heave response by 41.8%. The peak of resistance at the bow in irregular waves is about ten times higher than that at the stern, and the peak of resistance occurs more often when the moonpool is open at the same time. Conclusions The experimental study shows that the difference in load conditions changes the waterplane area and affects the hull resistance in hyrostatic water. In contrast, the closure of the moonpool not only reduces acceleration and resistance, but also improves surge and heave. As such, this paper can provide references for the structural design of drillships with moonpools. -
Key words:
- drillship /
- resistance characteristics /
- open/closed moonpool /
- test in towing tank
-
表 1 钻井船主尺度
Table 1. Main dimensions of the drillship
参数 模型值 实际值 船体总长 /m 3.379 216.282 垂线间长/m 3.251 208.000 型宽 /m 0.503 33.999 型深 /m 0.258 16.500 设计吃水/m 0.148 9.500 设计载重/t 0.15 40 303.00 轻载吃水/m 0.133 8.500 轻载排水量/t 0.132 35 569.000 纵摇惯性矩/(J·kg−1·cm−1·s−2) 724.16 − 月池尺度(L×W×H)/m 0.562 5×0.187 5× 0.257 8 36.000 0×12.000 0×16.500 0 轻载重心(LCG, TCG, VCG)/m (1.344, 0.002, 0.149) (79.670, 0.110, 9.580) 设计载重重心(LCG, TCG, VCG)/m (1.344, 0.002, 0.134) (79.670, 0.110, 8.580) 表 2 加速度传感器坐标
Table 2. The mounting positions of acceleration sensors
加速度传感器所在位置 模型中坐标值/ m 船首 (3.35, 0, 0.20) 舯 (1.45, 0, 0.20) 船尾 (0, 0, 0.20) 表 3 规则波迎浪船模阻力试验工况
Table 3. Ship model resistance test conditions in regular waves
船模状态 工况 实船速度/kn 船模速度/(m·s−1) 月池封闭 E01 3 0.193 E02 5 0.322 E03 7 0.450 E04 9 0.579 E05 11 0.707 E06 12 0.772 E07 13 0.836 E08 14 0.900 E09 15 0.965 月池开放 F01 3 0.193 F02 5 0.322 F03 7 0.450 F04 9 0.579 F05 11 0.707 F06 12 0.772 F07 13 0.836 F08 14 0.900 F09 15 0.965 表 4 不规则波迎浪船模阻力试验工况
Table 4. Ship model resistance test conditions in irregular waves
船模状态 工况 实船速度/kn 船模速度/(m·s−1) 月池封闭 I06 12 0.772 I07 13 0.836 I08 14 0.900 I09 15 0.965 月池开放 J06 12 0.772 J07 13 0.836 K08 14 0.900 K09 15 0.965 -
[1] 余建星, 于佳晖, 余杨, 等. 不同吃水条件下船舶运动及附加阻力的研究[J]. 哈尔滨工程大学学报, 2020, 41(11): 1611–1616. doi: 10.11990/jheu.201904071YU J X, YU J H, YU Y, et al. Study of ship motion and additional resistance at different drafts[J]. Journal of Harbin Engineering University, 2020, 41(11): 1611–1616 (in Chinese). doi: 10.11990/jheu.201904071 [2] 黄文超, 赵新颖, 黄温赟, 等. 规则波下船体阻力特性计算[J]. 船舶工程, 2020, 42(增刊 2): 56–62. doi: 10.13788/j.cnki.cbgc.2020.S2.011HUANG W C, ZHAO X Y, HUANG W Y, et al. Calculation of hull resistance characteristics under regular waves[J]. Ship Engineering, 2020, 42(Supp 2): 56–62 (in Chinese). doi: 10.13788/j.cnki.cbgc.2020.S2.011 [3] 徐双喜, 林江萍, 董威, 等. 浅水航道船舶阻力计算方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(3): 414–417,422.XU S X, LIN J P, DONG W, et al. Study on calculation method of ship resistance in shallow water[J]. Journal of Wuhan University of Technology (Transporta-tion Science & Engineering), 2020, 44(3): 414–417,422 (in Chinese). [4] 程宣恺, 周国平, 张雨新, 等. 模型尺度下海工船舶月池对阻力性能影响的数值模拟研究[J]. 船舶力学, 2020, 24(5): 589–598. doi: 10.3969/j.issn.1007-7294.2020.05.004CHENG X K, ZHOU G P, ZHANG Y X, et al. Numerical simulation research of moonpools effect in model scale on ship resistance[J]. Journal of Ship Mechanics, 2020, 24(5): 589–598 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.05.004 [5] 宋科委, 郭春雨, 孙聪, 等. 实尺度船舶阻力计算及尺度效应研究[J]. 华中科技大学学报(自然科学版), 2021, 49(6): 74–80. doi: 10.13245/j.hust.210614SONG K W, GUO C Y, SUN C, et al. Research on the full-scale ship resistance simulation and the scale effect[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(6): 74–80 (in Chinese). doi: 10.13245/j.hust.210614 [6] 顾晓帆, 朱仁传, 査乐. 基于多域边界元法的船舶非线性兴波阻力计算[C]//第三十一届全国水动力学研讨会论文集(上册). 上海: 水动力学研究与进展, 2020: 8.GU X F, ZHU R C, ZHA L. Nonlinear calculation of ship wave problem by multi-domain BEM[C]//Proceedings of the 31st National Conference on Hydrodynamics—Vol.1. Shanghai: Journal of Hydrodynamics, 2020: 8 (in Chinese). [7] 詹星宇, 毛筱菲. 船舶月池的阻力与流场特性及其改进型式[J]. 中国舰船研究, 2020, 15(3): 45–53,101. doi: 10.19693/j.issn.1673-3185.01594ZHAN X Y, MAO X F. The resistance and flow field characteristics of moonpool and its improvement forms[J]. Chinese Journal of Ship Research, 2020, 15(3): 45–53,101 (in Chinese). doi: 10.19693/j.issn.1673-3185.01594 [8] 曾智宏, 邓潇潇, 孙雷. 厚板结构对波浪作用下带月池船体垂荡运动的影响分析[J]. 中国舰船研究, 2020, 15(增刊 1): 20–33. doi: 10.19693/j.issn.1673-3185.01993ZENG Z H, DENG X X, SUN L. Effect analysis of thick plate structure on heave motion of ship with moon-pool in waves[J]. Chinese Journal of Ship Research, 2020, 15(Supp 1): 20–33 (in Chinese). doi: 10.19693/j.issn.1673-3185.01993 [9] ZHANG X Y, SUN L P, SUN C, et al. Study on the influence of the moonpool on the smooth water resistance performance of the ship[J]. Ocean Engineering, 2021, 237: 109590. doi: 10.1016/j.oceaneng.2021.109590 [10] 姚震球, 孙硕, 凌宏杰, 等. 不同月池形状对钻井船附加阻力的影响[J]. 造船技术, 2020(2): 7–12. doi: 10.3969/j.issn.1000-3878.2020.02.002YAO Z Q, SUN S, LING H J, et al. Influence of different moonpool shape on additional resistance of drilling vessel[J]. Marine Technology, 2020(2): 7–12 (in Chinese). doi: 10.3969/j.issn.1000-3878.2020.02.002 [11] 赵鑫, 孙树政, 任慧龙. 基于CFD不同月池形态船体静水阻力分析[C]//第三十一届全国水动力学研讨会论文集(下册). 上海: 水动力学研究与进展, 2020: 7.ZHAO X, SUN S Z, REN H L. CFD based clam water resistance prediction for different moonpools[C]//Proceedings of the 31st National Conference on Hydrodynamics—Vol. 2 . Shanghai: Journal of Hydrodynamics, 2020: 7 (in Chinese) [12] 石城, 吕海宁, 杨建民. 深海钻井船大开口阶梯形月池水体的非线性共振特性研究[J]. 船舶力学, 2021, 25(3): 311–320. doi: 10.3969/j.issn.1007-7294.2021.03.006SHI C, LYU H N, YANG J M. Nonlinear resonance characteristics of a rectangular moonpool with stairways in a deep sea drilling ship[J]. Journal of Ship Mechanics, 2021, 25(3): 311–320 (in Chinese). doi: 10.3969/j.issn.1007-7294.2021.03.006 [13] 祝启波, 付金丽, 曾江易. 水线面大开口船舶阻力和耐波性试验研究[J]. 广东造船, 2019, 38(5): 22–25. doi: 10.3969/j.issn.2095-6622.2019.05.006ZHU Q B, FU J L, ZENG J Y. Resistance and seakeeping model test of ship with notch[J]. Guangdong Shipbuilding, 2019, 38(5): 22–25 (in Chinese). doi: 10.3969/j.issn.2095-6622.2019.05.006 -
ZG2553_en.pdf
-