Analysis of ultimate uniaxial compressive strength of stiffened panel considering influence of shear load
-
摘要:
目的 旨在探究面内剪力对加筋板极限强度的影响规律,以及侧向压力与面内剪力之间是否会产生耦合效应。 方法 建立一系列加筋板有限元模型,采用ABAQUS软件进行面内剪力与纵向轴压载荷联合作用下的数值仿真分析,然后对计算结果进行无量纲化处理,并基于最小二乘法对联合载荷作用下的加筋板极限状态曲线/方程进行拟合。 结果 结果显示,面内剪力对加筋板轴压极限强度的影响规律得以明确,得到了考虑剪切载荷作用的加筋板极限状态方程。 结论 所做研究可为面内剪力作用下加筋板的纵向轴压极限强度修正提供参考。 Abstract:Objective This study aims to explore the law of the critical compression stress of stiffened panels under the influence of in-plane shear load, and whether in-plane shear load combined with lateral pressure will introduce a strong coupling effect. Method To this end, nonlinear finite element (FE) software ABAQUS is used to perform numerical simulation analysis under combined loads on a group of FE models. A limit state equation/curve is then derived from the dimensionless calculation results based on the minimum square error method. Results The results show that the influence law of in-plane shear load on the critical compression stress of stiffened panels is clarified, and a limit state equation of stiffened panels that considers the effect of shear load is obtained. Conclusion The limit state equation in this paper can provide references for modifying the ultimate strength of stiffened panels under the influence of in-plane shear load. -
Key words:
- stiffened panel /
- ultimate strength /
- in-plane shear load /
- lateral pressure /
- combined loads
-
表 1 压缩载荷下双跨模型边界条件
Table 1. Boundary conditions of two-span model with compression loads
位置 边界条件 AD Ry = Rz = 0,耦合端部节点并约束Ux一致,施加位移载荷 A1D1 Ry = Rz = 0,耦合端部节点且Ux = 0 AA1,DD1 Rx = Rz = 0,耦合端部节点并约束Uy一致 EF,E1F1,BB1,CC1 Uz = 0 表 2 压缩载荷下单跨模型边界条件
Table 2. Boundary conditions of single-span model with compression loads
位置 边界条件 AB Rx = Rz = Uz = 0,耦合端部节点并约束Ux一致,施加位移载荷 A1B1 Rx = Rz = Uz = 0,耦合端部节点并约束Ux = 0 AA1,BB1 Ry = Rz = Uz = 0,耦合端部节点并约束Uy一致 表 3 单跨模型施加面内剪力时边界条件
Table 3. Boundary conditions of single-span model with in-plane shear loads
位置 边界条件 AB Uz = 0,耦合端部节点并约束Ux一致 A1B1 Uz = 0,耦合端部节点并约束Ux = 0 AA1,BB1 Uz = 0,约束板边节点Rz一致 角点B1 Uy = 0 表 4 轴压极限强度可靠性验证算例
Table 4. Cases for reliability verification of ultimate strength under axial compression
参数 算例1 算例2 ${t_{\rm{p}} }$/mm 15 18.5 ${h_{\rm{w}} }$/mm 580 235 ${t_{\rm{w}} }$/mm 15 10 ${b_{\rm{f}} }$/mm 150 90 ${t_{\rm{f}} }$/mm 20 15 表 5 算例计算结果
Table 5. Calculation results of case 1 and case 2
模型 轴压极限强度/MPa 误差/% 本文结果 文献[11]结果 单跨(算例1) 240.96 238.33 1.10 双跨(算例1) 233.09 227.05 2.66 单跨(算例2) 234.45 231.47 1.29 双跨(算例2) 201.25 190.98 5.38 表 6 剪切极限应力可靠性验证算例
Table 6. Cases for reliability verification of ultimate shear stress
算例 剪切极限应力/MPa 误差/% 本文结果 文献结果 WANG F t10 165.87 163.55 1.42 WANG F t19 175.78 180.23 −2.47 ZHANG S 150.95 149.13 1.22 表 7 加强筋尺寸参数信息
Table 7. Information of the sizes of stiffeners
尺寸 加强筋尺寸/mm F($ {h_{\rm{w}}} \times {t_{\rm{w}}} $) A($ {h_{\rm{w}}} \times {b_{\rm{f}}} \times {t_{\rm{w}}}/{t_{\rm{f}}} $) T($ {h_{\rm{w}}} \times {t_{\rm{w}}} + {b_{\rm{f}}} \times {t_{\rm{f}}} $) Size 1 $ 250 \times 25 $ $ 235 \times 90 \times 10/15 $ $ 235 \times 10 + 90 \times 15 $ Size 2 $ 350 \times 35 $ $ 383 \times 100 \times 12/17 $ $ 383 \times 12 + 100 \times 17 $ Size 3 $ 550 \times 35 $ $ 580 \times 150 \times 15/20 $ $ 580 \times 15 + 150 \times 20 $ 表 8 按固定比例同时施加压剪载荷时的加筋板极限应力
Table 8. Ultimate stress of stiffened plate obtained by applying compression-shear load simultaneously with fixed proportion
$ {\sigma _x}:{\tau _{xy}} $ 极限状态应力/MPa 8∶2 ${\sigma _{x{\rm{u}} } } = 230.72,{\text{ } }{\tau _{xy} } = 57.68$ 7∶3 ${\sigma _{x{\rm{u}} } } = 214.06,{\text{ } }{\tau _{xy} } = 91.74$ 6∶4 ${\sigma _{x{\rm{u}} } } = 183.18,{\text{ } }{\tau _{xy} } = 122.12$ 4∶6 ${\sigma _{x{\rm{u}} } } = 109.44,{\text{ } }{\tau _{xy} } = 164.16$ 表 9 先施加剪切载荷至指定值后再施加轴压载荷的加筋板极限应力
Table 9. Ultimate stress of stiffened plate as applying shear load to a specified value followed by axial compression load
$ {\tau _{xy}}/{\tau _{y}} $ 极限状态应力/MPa 0.2 ${\sigma _{x{\rm{u}} } } = 238.98,{\text{ } }{\tau _{xy} } = 36.21$ 0.4 ${\sigma _{x{\rm{u}} } } = 225.85,{\text{ } }{\tau _{xy} } = 72.42$ 0.6 ${\sigma _{x{\rm{u}} } } = 198.37,{\text{ } }{\tau _{xy} } = 108.63$ 0.8 ${\sigma _{x{\rm{u}} } } = 153.18,{\text{ } }{\tau _{xy} } = 144.85$ 表 10 3个加筋板算例在3种载荷联合作用下的轴压极限强度值
Table 10. Ultimate strength of three stiffened plates under combined loads of lateral pressure, shear and axial compression
带板厚tp /mm 纯轴压/MPa 侧压/MPa 侧压+轴压/MPa 侧压+剪力(0.2)+轴压/MPa 侧压+剪力(0.4)+轴压/MPa 侧压+剪力(0.6)+轴压/MPa 侧压+剪力(0.8)+轴压/MPa 15.0 226.48 0.10 194.80 (100%) 190.88 (98.0%) 177.12 (90.9%) 146.36 (75.1%) 72.86 (37.4%) 0.15 174.62 (100%) 170.61 (97.7%) 155.41 (89.0%) 122.05 (69.9%) 46.00 (26.3%) 18.5 244.79 0.10 214.97 (100%) 211.11 (98.2%) 197.27 (91.8%) 171.57 (79.8%) 114.30 (53.2%) 0.15 196.08 (100%) 192.67 (98.3%) 179.76 (91.7%) 152.14 (77.6%) 94.39 (48.1%) 25.0 280.42 0.10 251.89 (100%) 248.71 (98.7%) 234.71 (93.2%) 207.46 (82.4%) 157.26 (62.4%) 0.15 237.83 (100%) 230.86 (97.1% 216.91 (91.2%) 192.07 (80.8%) 145.11 (61.0%) -
[1] SMITH C S. Influence of local compressive failure on ultimate longitudinal strength of a ship's hull[C]//Proceedings of International Symposium on Practical Design in Shipbuilding. Tokyo, Japan: PRADS, 1977: 73-79. [2] IACS. Common structural rules for bulk carriers and oil tankers[S]. London, UK: International Association of Classification Societies, 2018. [3] XU M C, SONG Z J, ZHANG B W, et al. Empirical formula for predicting ultimate strength of stiffened panel of ship structure under combined longitudinal compression and lateral loads[J]. Ocean Engineering, 2018, 162: 161–175. doi: 10.1016/j.oceaneng.2018.05.015 [4] 吴剑国, 万琪, 王福花, 等. 计及侧向载荷作用的纵骨梁柱多跨失稳载荷−端缩曲线确定方法[J]. 船舶力学, 2020, 24(4): 474–483. doi: 10.3969/j.issn.1007-7294.2020.04.007WU J G, WAN Q, WANG F H, et al. Method of beam-column buckling load-end shortening curve of multi-span instability longitudinal stiffener with action of lateral load[J]. Journal of Ship Mechanics, 2020, 24(4): 474–483 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.04.007 [5] 朱青淳, 王福花, 王晓宇. 纵骨多跨梁柱屈曲载荷−端缩曲线的修正[J]. 中国造船, 2014, 55(1): 46–53. doi: 10.3969/j.issn.1000-4882.2014.01.006ZHU Q C, WANG F H, WANG X Y. A correction method of load-end shortening curves for longitudinal multi-span beam column buckling[J]. Shipbuilding of China, 2014, 55(1): 46–53 (in Chinese). doi: 10.3969/j.issn.1000-4882.2014.01.006 [6] 陈雨哲, 王德禹. 侧向载荷作用下的T型加筋板梁柱屈曲载荷−端缩曲线修正[J]. 舰船科学技术, 2021, 43(13): 19–26.CHEN Y C, WANG D Y. A correction method of Load-end shortening curves for T-stiffened plate beam column buckling under lateral load[J]. Ship Science and Technology, 2021, 43(13): 19–26 (in Chinese). [7] CUI J J, WANG D Y. Ultimate strength of container ship bilge panels subjected to axial compression combined with bending and lateral pressure[J]. International Journal of Offshore and Polar Engineering, 2020, 30(3): 327–339. doi: 10.17736/ijope.2020.ty08 [8] MA H Y, XIONG Q F, WANG D Y. Experimental and numerical study on the ultimate strength of stiffened plates subjected to combined biaxial compression and lateral loads[J]. Ocean Engineering, 2021, 228: 108928. doi: 10.1016/j.oceaneng.2021.108928 [9] MEI H Y, WAN Q, WANG D Y. Experimental and numerical study on ultimate strength of stiffened columns under axial compression[J]. Ocean Engineering, 2020, 217: 107982. doi: 10.1016/j.oceaneng.2020.107982 [10] 陈彦廷, 于昌利, 桂洪斌. 船体板和加筋板的屈曲及极限强度研究综述[J]. 中国舰船研究, 2017, 12(1): 54–62. doi: 10.3969/j.issn.1673-3185.2017.01.009CHEN Y T, YU C L, GUI H B. Research development of buckling and ultimate strength of hull plate and stiffened panel[J]. Chinese Journal of Ship Research, 2017, 12(1): 54–62 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.009 [11] PAIK J K, AMLASHI H, BOON B, et al. Ultimate strength[C]//The 18th International Ship and Offshore Structures Congress (ISSC, 2012). Rostock: ISSC, 2012. [12] 陈科, 冯亮, 鲁国春. 船体板剪切极限强度数值分析[J]. 中国水运, 2017, 17(2): 8–10.CHEN K, FENG L, LU G C. Numerical analysis of ultimate shear strength of plate[J]. China Water Transport, 2017, 17(2): 8–10 (in Chinese). [13] 唐昊. 船舶加筋板屈曲模式的非线性数值计算[D]. 哈尔滨: 哈尔滨工业大学, 2018.TANG H. Nonlinear numerical calculation of buckling modes of stiffened plates[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). [14] WANG F, PAIK J K, KIM B J, et al. Ultimate shear strength of intact and cracked stiffened panels[J]. Thin-Walled Structures, 2015, 88: 48–57. doi: 10.1016/j.tws.2014.12.001 [15] ZHANG S, KUMAR P, RUTHERFORD S E. Ultimate shear strength of plates and stiffened panels[J]. Ships and Offshore Structures, 2008, 3(2): 105–112. doi: 10.1080/17445300701739642 [16] ZHANG S M, KHAN I. Buckling and ultimate capability of plates and stiffened panels in axial compression[J]. Marine Structures, 2009, 22(4): 791–808. doi: 10.1016/j.marstruc.2009.09.001 -