留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面内剪力对加筋板纵向轴压极限强度的影响分析

颜霁 崔进举 王德禹

颜霁, 崔进举, 王德禹. 面内剪力对加筋板纵向轴压极限强度的影响分析[J]. 中国舰船研究, 2023, 18(2): 149–159 doi: 10.19693/j.issn.1673-3185.02540
引用本文: 颜霁, 崔进举, 王德禹. 面内剪力对加筋板纵向轴压极限强度的影响分析[J]. 中国舰船研究, 2023, 18(2): 149–159 doi: 10.19693/j.issn.1673-3185.02540
YAN J, CUI J J, WANG D Y. Analysis of ultimate uniaxial compressive strength of stiffened panel considering influence of shear load[J]. Chinese Journal of Ship Research, 2023, 18(2): 149–159 doi: 10.19693/j.issn.1673-3185.02540
Citation: YAN J, CUI J J, WANG D Y. Analysis of ultimate uniaxial compressive strength of stiffened panel considering influence of shear load[J]. Chinese Journal of Ship Research, 2023, 18(2): 149–159 doi: 10.19693/j.issn.1673-3185.02540

面内剪力对加筋板纵向轴压极限强度的影响分析

doi: 10.19693/j.issn.1673-3185.02540
基金项目: 国家自然科学基金资助项目(51809167)
详细信息
    作者简介:

    颜霁,男,1996年生,硕士生。研究方向:船体结构强度及优化设计。E-mail:yanji_925@163.com

    崔进举,男,1985年生,博士,助理研究员,硕士生导师。研究方向:船舶结构极限强度与可靠性计算。E-mail:jinjucui@sjtu.edu.cn

    王德禹,男,1963年生,博士,教授,博士生导师。研究方向:船舶结构极限强度与试验技术,船舶结构力学。E-mail:dywang@sjtu.edu.cn

    通信作者:

    崔进举

  • 中图分类号: U663.2

Analysis of ultimate uniaxial compressive strength of stiffened panel considering influence of shear load

知识共享许可协议
面内剪力对加筋板纵向轴压极限强度的影响分析颜霁,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在探究面内剪力对加筋板极限强度的影响规律,以及侧向压力与面内剪力之间是否会产生耦合效应。  方法  建立一系列加筋板有限元模型,采用ABAQUS软件进行面内剪力与纵向轴压载荷联合作用下的数值仿真分析,然后对计算结果进行无量纲化处理,并基于最小二乘法对联合载荷作用下的加筋板极限状态曲线/方程进行拟合。  结果  结果显示,面内剪力对加筋板轴压极限强度的影响规律得以明确,得到了考虑剪切载荷作用的加筋板极限状态方程。  结论  所做研究可为面内剪力作用下加筋板的纵向轴压极限强度修正提供参考。
  • 图  ISSC加筋板模型[11]

    Figure  1.  Stiffened plate model[11]

    图  加筋板有限元模型网格划分

    Figure  2.  Mesh division of stiffened plate in FE model

    图  双跨有限元模型边界条件设置图

    Figure  3.  Illustration of boundary conditions of two-span finiteelement model

    图  单跨有限元模型边界条件设置图

    Figure  4.  Illustration of boundary conditions of single-span finiteelement model

    图  加筋板板周面内剪力加载示意图

    Figure  5.  Schematic diagram of in-plane shear loads on stiffened plate models

    图  3种剪切验证算例的剪切极限状态应力云图

    Figure  6.  Contours of the von Mises stress in shear limit states for three cases

    图  加筋板失效模式(放大10倍)

    Figure  7.  Failure modes of stiffened plates obtained under a ten-fold magnification

    图  扁钢加筋板计算结果

    Figure  8.  Calculation results of stiffened plates with flat bars

    图  角钢加筋板计算结果

    Figure  9.  Calculation results of stiffened plates with angle bars

    图  10  T型材加筋板计算结果

    Figure  10.  Calculation results of stiffened plates with Tee bars

    图  11  拟合曲线与数据点

    Figure  11.  Fitted curve and data points

    图  12  2个算例的应力−应变曲线

    Figure  12.  Stress-strain curves of two cases

    图  13  联合载荷作用下的加筋板轴压极限状态云图(放大10倍)

    Figure  13.  Contours of the von Mises stress on stiffened plates in limit state subject to combined loads obtained under a ten-fold magnification

    图  14  2种联合载荷施加方法下对应的极限状态曲线及离散点

    Figure  14.  Limit state curves and discrete points obtained by two methods of applying combined loads

    图  15  带板厚为15 mm加筋板在3种载荷联合作用下的应力−应变曲线

    Figure  15.  Stress-strain curves of stiffened plate with tp = 15 mm under combined loads of lateral pressure, shear and axial compression

    表  压缩载荷下双跨模型边界条件

    Table  1.  Boundary conditions of two-span model with compression loads

    位置边界条件
    AD Ry = Rz = 0,耦合端部节点并约束Ux一致,施加位移载荷
    A1D1 Ry = Rz = 0,耦合端部节点且Ux = 0
    AA1,DD1 Rx = Rz = 0,耦合端部节点并约束Uy一致
    EF,E1F1,BB1,CC1 Uz = 0
    下载: 导出CSV

    表  压缩载荷下单跨模型边界条件

    Table  2.  Boundary conditions of single-span model with compression loads

    位置边界条件
    ABRx = Rz = Uz = 0,耦合端部节点并约束Ux一致,施加位移载荷
    A1B1Rx = Rz = Uz = 0,耦合端部节点并约束Ux = 0
    AA1,BB1Ry = Rz = Uz = 0,耦合端部节点并约束Uy一致
    下载: 导出CSV

    表  单跨模型施加面内剪力时边界条件

    Table  3.  Boundary conditions of single-span model with in-plane shear loads

    位置边界条件
    ABUz = 0,耦合端部节点并约束Ux一致
    A1B1Uz = 0,耦合端部节点并约束Ux = 0
    AA1,BB1Uz = 0,约束板边节点Rz一致
    角点B1Uy = 0
    下载: 导出CSV

    表  轴压极限强度可靠性验证算例

    Table  4.  Cases for reliability verification of ultimate strength under axial compression

    参数算例1算例2
    ${t_{\rm{p}} }$/mm1518.5
    ${h_{\rm{w}} }$/mm580235
    ${t_{\rm{w}} }$/mm1510
    ${b_{\rm{f}} }$/mm15090
    ${t_{\rm{f}} }$/mm2015
    下载: 导出CSV

    表  算例计算结果

    Table  5.  Calculation results of case 1 and case 2

    模型轴压极限强度/MPa误差/%
    本文结果文献[11]结果
    单跨(算例1)240.96238.331.10
    双跨(算例1)233.09227.052.66
    单跨(算例2)234.45231.471.29
    双跨(算例2)201.25190.985.38
    下载: 导出CSV

    表  剪切极限应力可靠性验证算例

    Table  6.  Cases for reliability verification of ultimate shear stress

    算例剪切极限应力/MPa误差/%
    本文结果文献结果
    WANG F t10165.87163.551.42
    WANG F t19175.78180.23−2.47
    ZHANG S150.95149.131.22
    下载: 导出CSV

    表  加强筋尺寸参数信息

    Table  7.  Information of the sizes of stiffeners

    尺寸加强筋尺寸/mm
    F($ {h_{\rm{w}}} \times {t_{\rm{w}}} $)A($ {h_{\rm{w}}} \times {b_{\rm{f}}} \times {t_{\rm{w}}}/{t_{\rm{f}}} $)T($ {h_{\rm{w}}} \times {t_{\rm{w}}} + {b_{\rm{f}}} \times {t_{\rm{f}}} $)
    Size 1$ 250 \times 25 $$ 235 \times 90 \times 10/15 $$ 235 \times 10 + 90 \times 15 $
    Size 2$ 350 \times 35 $$ 383 \times 100 \times 12/17 $$ 383 \times 12 + 100 \times 17 $
    Size 3$ 550 \times 35 $$ 580 \times 150 \times 15/20 $$ 580 \times 15 + 150 \times 20 $
    下载: 导出CSV

    表  按固定比例同时施加压剪载荷时的加筋板极限应力

    Table  8.  Ultimate stress of stiffened plate obtained by applying compression-shear load simultaneously with fixed proportion

    $ {\sigma _x}:{\tau _{xy}} $极限状态应力/MPa
    8∶2${\sigma _{x{\rm{u}} } } = 230.72,{\text{ } }{\tau _{xy} } = 57.68$
    7∶3${\sigma _{x{\rm{u}} } } = 214.06,{\text{ } }{\tau _{xy} } = 91.74$
    6∶4${\sigma _{x{\rm{u}} } } = 183.18,{\text{ } }{\tau _{xy} } = 122.12$
    4∶6${\sigma _{x{\rm{u}} } } = 109.44,{\text{ } }{\tau _{xy} } = 164.16$
    下载: 导出CSV

    表  先施加剪切载荷至指定值后再施加轴压载荷的加筋板极限应力

    Table  9.  Ultimate stress of stiffened plate as applying shear load to a specified value followed by axial compression load

    $ {\tau _{xy}}/{\tau _{y}} $极限状态应力/MPa
    0.2${\sigma _{x{\rm{u}} } } = 238.98,{\text{ } }{\tau _{xy} } = 36.21$
    0.4${\sigma _{x{\rm{u}} } } = 225.85,{\text{ } }{\tau _{xy} } = 72.42$
    0.6${\sigma _{x{\rm{u}} } } = 198.37,{\text{ } }{\tau _{xy} } = 108.63$
    0.8${\sigma _{x{\rm{u}} } } = 153.18,{\text{ } }{\tau _{xy} } = 144.85$
    下载: 导出CSV

    表  10  3个加筋板算例在3种载荷联合作用下的轴压极限强度值

    Table  10.  Ultimate strength of three stiffened plates under combined loads of lateral pressure, shear and axial compression

    带板厚tp /mm纯轴压/MPa侧压/MPa侧压+轴压/MPa侧压+剪力(0.2)+轴压/MPa侧压+剪力(0.4)+轴压/MPa侧压+剪力(0.6)+轴压/MPa侧压+剪力(0.8)+轴压/MPa
    15.0226.480.10194.80 (100%)190.88 (98.0%)177.12 (90.9%)146.36 (75.1%)72.86 (37.4%)
    0.15174.62 (100%)170.61 (97.7%)155.41 (89.0%)122.05 (69.9%)46.00 (26.3%)
    18.5244.790.10214.97 (100%)211.11 (98.2%)197.27 (91.8%)171.57 (79.8%)114.30 (53.2%)
    0.15196.08 (100%)192.67 (98.3%)179.76 (91.7%)152.14 (77.6%)94.39 (48.1%)
    25.0280.420.10251.89 (100%)248.71 (98.7%)234.71 (93.2%)207.46 (82.4%)157.26 (62.4%)
    0.15237.83 (100%)230.86 (97.1%216.91 (91.2%)192.07 (80.8%)145.11 (61.0%)
    下载: 导出CSV
  • [1] SMITH C S. Influence of local compressive failure on ultimate longitudinal strength of a ship's hull[C]//Proceedings of International Symposium on Practical Design in Shipbuilding. Tokyo, Japan: PRADS, 1977: 73-79.
    [2] IACS. Common structural rules for bulk carriers and oil tankers[S]. London, UK: International Association of Classification Societies, 2018.
    [3] XU M C, SONG Z J, ZHANG B W, et al. Empirical formula for predicting ultimate strength of stiffened panel of ship structure under combined longitudinal compression and lateral loads[J]. Ocean Engineering, 2018, 162: 161–175. doi: 10.1016/j.oceaneng.2018.05.015
    [4] 吴剑国, 万琪, 王福花, 等. 计及侧向载荷作用的纵骨梁柱多跨失稳载荷−端缩曲线确定方法[J]. 船舶力学, 2020, 24(4): 474–483. doi: 10.3969/j.issn.1007-7294.2020.04.007

    WU J G, WAN Q, WANG F H, et al. Method of beam-column buckling load-end shortening curve of multi-span instability longitudinal stiffener with action of lateral load[J]. Journal of Ship Mechanics, 2020, 24(4): 474–483 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.04.007
    [5] 朱青淳, 王福花, 王晓宇. 纵骨多跨梁柱屈曲载荷−端缩曲线的修正[J]. 中国造船, 2014, 55(1): 46–53. doi: 10.3969/j.issn.1000-4882.2014.01.006

    ZHU Q C, WANG F H, WANG X Y. A correction method of load-end shortening curves for longitudinal multi-span beam column buckling[J]. Shipbuilding of China, 2014, 55(1): 46–53 (in Chinese). doi: 10.3969/j.issn.1000-4882.2014.01.006
    [6] 陈雨哲, 王德禹. 侧向载荷作用下的T型加筋板梁柱屈曲载荷−端缩曲线修正[J]. 舰船科学技术, 2021, 43(13): 19–26.

    CHEN Y C, WANG D Y. A correction method of Load-end shortening curves for T-stiffened plate beam column buckling under lateral load[J]. Ship Science and Technology, 2021, 43(13): 19–26 (in Chinese).
    [7] CUI J J, WANG D Y. Ultimate strength of container ship bilge panels subjected to axial compression combined with bending and lateral pressure[J]. International Journal of Offshore and Polar Engineering, 2020, 30(3): 327–339. doi: 10.17736/ijope.2020.ty08
    [8] MA H Y, XIONG Q F, WANG D Y. Experimental and numerical study on the ultimate strength of stiffened plates subjected to combined biaxial compression and lateral loads[J]. Ocean Engineering, 2021, 228: 108928. doi: 10.1016/j.oceaneng.2021.108928
    [9] MEI H Y, WAN Q, WANG D Y. Experimental and numerical study on ultimate strength of stiffened columns under axial compression[J]. Ocean Engineering, 2020, 217: 107982. doi: 10.1016/j.oceaneng.2020.107982
    [10] 陈彦廷, 于昌利, 桂洪斌. 船体板和加筋板的屈曲及极限强度研究综述[J]. 中国舰船研究, 2017, 12(1): 54–62. doi: 10.3969/j.issn.1673-3185.2017.01.009

    CHEN Y T, YU C L, GUI H B. Research development of buckling and ultimate strength of hull plate and stiffened panel[J]. Chinese Journal of Ship Research, 2017, 12(1): 54–62 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.009
    [11] PAIK J K, AMLASHI H, BOON B, et al. Ultimate strength[C]//The 18th International Ship and Offshore Structures Congress (ISSC, 2012). Rostock: ISSC, 2012.
    [12] 陈科, 冯亮, 鲁国春. 船体板剪切极限强度数值分析[J]. 中国水运, 2017, 17(2): 8–10.

    CHEN K, FENG L, LU G C. Numerical analysis of ultimate shear strength of plate[J]. China Water Transport, 2017, 17(2): 8–10 (in Chinese).
    [13] 唐昊. 船舶加筋板屈曲模式的非线性数值计算[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    TANG H. Nonlinear numerical calculation of buckling modes of stiffened plates[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
    [14] WANG F, PAIK J K, KIM B J, et al. Ultimate shear strength of intact and cracked stiffened panels[J]. Thin-Walled Structures, 2015, 88: 48–57. doi: 10.1016/j.tws.2014.12.001
    [15] ZHANG S, KUMAR P, RUTHERFORD S E. Ultimate shear strength of plates and stiffened panels[J]. Ships and Offshore Structures, 2008, 3(2): 105–112. doi: 10.1080/17445300701739642
    [16] ZHANG S M, KHAN I. Buckling and ultimate capability of plates and stiffened panels in axial compression[J]. Marine Structures, 2009, 22(4): 791–808. doi: 10.1016/j.marstruc.2009.09.001
  • 加载中
图(15) / 表(10)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  70
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 修回日期:  2021-12-12
  • 网络出版日期:  2023-04-07
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回