留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态安全领域的水下机器人近底应急决策

安金鑫 杨少龙 向先波 董东磊

安金鑫, 杨少龙, 向先波, 等. 基于动态安全领域的水下机器人近底应急决策[J]. 中国舰船研究, 2023, 18(2): 184–193 doi: 10.19693/j.issn.1673-3185.02533
引用本文: 安金鑫, 杨少龙, 向先波, 等. 基于动态安全领域的水下机器人近底应急决策[J]. 中国舰船研究, 2023, 18(2): 184–193 doi: 10.19693/j.issn.1673-3185.02533
AN J X, YANG S L, XIANG X B, et al. Seabed collision emergency decision-making of AUV based on safety domain model[J]. Chinese Journal of Ship Research, 2023, 18(2): 184–193 doi: 10.19693/j.issn.1673-3185.02533
Citation: AN J X, YANG S L, XIANG X B, et al. Seabed collision emergency decision-making of AUV based on safety domain model[J]. Chinese Journal of Ship Research, 2023, 18(2): 184–193 doi: 10.19693/j.issn.1673-3185.02533

基于动态安全领域的水下机器人近底应急决策

doi: 10.19693/j.issn.1673-3185.02533
基金项目: 国家自然科学基金资助项目(52071153);中央高校基本科研业务费专项资金资助项目(2018KFYYXJJ015,2021yjsCXCY007)
详细信息
    作者简介:

    安金鑫,男,1998年生,硕士生。研究方向:水下机器人应急系统、路径规划。E-mail:an_jinxin@hust.edu.cn

    杨少龙,男,1988年生,博士,副教授。研究方向:无人航行器航线规划与智能控制。E-mail:yangsl@hust.edu.cn

    通信作者:

    杨少龙

  • 中图分类号: U674.941

Seabed collision emergency decision-making of AUV based on safety domain model

知识共享许可协议
基于动态安全领域的水下机器人近底应急决策安金鑫,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为了保障复杂未知环境下自主式水下机器人(AUV)的安全,防止意外触底,提出AUV近底动态安全领域模型,建立分级应急响应措施。  方法  建立AUV垂直面运动模型并通过超越试验对比验证,求解主动安全领域及被动安全领域距离,建立AUV近底航行动态安全领域模型,基于该模型设计AUV应急控制系统与应急策略。基于实时纵倾和对底高度状态,计算当前及未来危险系数,通过分配权重系数求得综合危险系数,用于指导AUV应急响应决策。  结果  通过分析湖试定深和定高航行试验,当河床高度相距AUV主动安全领域边界较近时,综合危险系数与河床高度的相关性较强,反之则较弱。结果表明,AUV应急控制系统在起伏地形下作业时能减少应急决策虚警,而在近底航行作业时又能减少应急决策漏警,从而实现在复杂起伏地形下近底航行时的合理应急决策。  结论  基于垂直面运动方程建立的近底安全领域模型与应急响应策略能够用于AUV水下航行近底危险实时预测,可提高AUV水下自主航行的安全性。
  • 图  AUV大地坐标系与附体坐标系

    Figure  1.  Earth-and body-fixed coordinate systems of AUV

    图  舵角时历曲线对比

    Figure  2.  Comparison of rudder angle curve

    图  AUV垂直面运动响应仿真与湖试结果对比

    Figure  3.  Simulation and lake test comparison of AUV vertical motion response curve

    图  AUV近底动态安全领域模型示意图

    Figure  4.  Diagram of bottoming dynamic safety domain model

    图  AUV应急响应决策框架

    Figure  5.  AUV emergency response framework

    图  AUV多状态应急判断逻辑

    Figure  6.  AUV multi-state emergency judgment logic

    图  AUV与河床轮廓的相对危险位置分析

    Figure  7.  Analysis of relative position between AUV and riverbed profile

    图  确定综合危险系数组成权重

    Figure  8.  Weight determination of comprehensive risk factor

    图  AUV传感器和执行机构布置示意图

    Figure  9.  Layout diagram of AUV sensors and actuators

    图  10  试验AUV和湖试场地

    Figure  10.  Lake test AUV and test site

    图  11  试验AUV控制架构

    Figure  11.  Control architecture for AUV testing

    图  12  AUV定深航行任务时序图

    Figure  12.  Sequence diagram of AUV for fixed depth navigation

    图  13  定深航行危险系数曲线

    Figure  13.  Risk factor curve of fixed depth navigation

    图  14  AUV定高航行任务时序图

    Figure  14.  Sequence diagram of AUV for fixed height navigation

    图  15  定高航行危险系数计算

    Figure  15.  Calculation of risk factor for fixed height navigation

    表  AUV大地坐标系与附体坐标系变量含义

    Table  1.  Notation of AUV in earth frame and body frame

    位置/m姿态角/rad线速度/(m∙s−1)角速度力/N力矩
    大地坐标系ξxφ$ \dot{x} $$ \dot{\phi } $XEKE
    ηyθ$ \dot{y} $$ \dot{\theta } $YEME
    ζzψ$ \dot{{\textit{z}}} $$ \dot{\varPsi } $ZENE
    附体坐标系x$ {x}' $$ \gamma $$ u $$ p $$ X $$ K $
    y$ {y}' $$ a $$ v $$ q $$ Y $$ M $
    z$ {{\textit{z}}}' $$ \beta $$ w $$ r $$ Z $$ N $
    下载: 导出CSV

    表  超越试验仿真和湖试的特征参数对比

    Table  2.  Comparison of feature parameters between simulation and lake test for the overtaking maneuver

    $ u $/ (m∙s−1)${\delta _{\rm{r}}}$/(°)$ \theta $/(°)${\theta }_{{\rm{ov}}}$/(°)${\xi }_{ {\rm{ov} } }$/m
    仿真 湖试 误差/% 仿真 湖试 误差/%
    310105.835.91.20.9881.4029.40
    120202.492.914.10.1000.119.09
    下载: 导出CSV

    表  河床相对AUV轮廓变化趋势及应急触发条件

    Table  3.  Riverbed change trend and emergency judgment

    判断条件1判断结果1判断条件2判断结果2
    $ \Delta D < \Delta S $河床呈上升趋势${\theta _0} \leqslant {\theta _{\rm{r}}}$进入应急决策
    ${\theta _0} > {\theta _{\rm{r}}}$不进入应急决策
    $ \Delta D > \Delta S $河床呈下降趋势$\left| { {\theta _0} } \right| \geqslant {\theta _{\rm{r}}}$进入应急决策
    $\left| { {\theta _0} } \right| < {\theta _{\rm{r}}}$不进入应急决策
    $ \Delta D = \Delta S $河床呈平缓趋势$ {\theta _0} \leqslant {0^ \circ } $进入应急决策
    $ {\theta _0} > {0^ \circ } $不进入应急决策
    下载: 导出CSV

    表  综合危险系数与危险等级的对应关系

    Table  4.  Corresponding relationship between comprehensive risk factors and risk levels

    综合危险系数$ \rho $ 危险等级
    <0.25 无危险
    0.25~0.5 轻度危险
    0.5~0.75 中度危险
    >0.75 重度危险
    下载: 导出CSV

    表  危险等级与应急响应措施的对应关系

    Table  5.  Corresponding relationship between risk levels and emergency response measures

    危险等级应急响应措施
    推进器停止满上浮舵满方向舵抛载
    无危险
    轻度危险
    中度危险
    重度危险
    下载: 导出CSV
  • [1] 冯正平. 国外自治水下机器人发展现状综述[J]. 鱼雷技术, 2005, 13(1): 5–9.

    FENG Z P. A review of the development of autonomous underwater vehicles (AUVs) in western countries[J]. Torpedo Technology, 2005, 13(1): 5–9 (in Chinese).
    [2] 徐玉如, 庞永杰, 甘永, 等. 智能水下机器人技术展望[J]. 智能系统学报, 2006, 1(1): 9–16.

    XU Y R, PANG Y J, GAN Y, et al. AUV-state-of-the-art and prospect[J]. CAAI Transactions on Intelligent Systems, 2006, 1(1): 9–16 (in Chinese).
    [3] BRITO M P, GRIFFITHS G. A Markov chain state transi-tion approach to establishing critical phases for AUV reliability[J]. IEEE Journal of Oceanic Engineering, 2011, 36(1): 139–149. doi: 10.1109/JOE.2010.2083070
    [4] ERNITS J, DEARDEN R, PEBODY M. Automatic fault detection and execution monitoring for AUV missions[C]//2010 IEEE/OES Autonomous Underwater Vehicles. Monterey, CA, USA: IEEE, 2011: 2-4.
    [5] QUIDU I, HETET A, DUPAS Y, et al. AUV (redermor) obstacle detection and avoidance experimental evaluation[C]//OCEANS 2007 - Europe. Aberdeen, UK: IEEE, 2007: 1–6.
    [6] FUJII Y, TANAKA K. Traffic capacity[J]. Journal of Navigation, 1971, 24(4): 543–552. doi: 10.1017/S0373463300022384
    [7] GOODWIN E M. A statistical study of ship domains[J]. Journal of Navigation, 1975, 28(3): 328–344. doi: 10.1017/S0373463300041230
    [8] TAM C K, BUCKNALL R, GREIG A. Review of collision avoidance and path planning methods for ships in close range encounters[J]. Journal of Navigation, 2009, 62(3): 455–476. doi: 10.1017/S0373463308005134
    [9] PIETRZYKOWSKI Z, URIASZ J. The ship domain – a criterion of navigational safety assessment in an open sea area[J]. Journal of Navigation, 2009, 62(1): 93–108. doi: 10.1017/S0373463308005018
    [10] LEWISON G R G. The risk of a ship encounter leading to a collision[J]. Journal of Navigation, 1978, 31(3): 384–407. doi: 10.1017/S037346330004193X
    [11] DAVIS P V, DOVE M J, STOCKEL C T. A computer simulation of marine traffic using domains and arenas[J]. Journal of Navigation, 1980, 33(2): 215–222. doi: 10.1017/S0373463300035220
    [12] HEGDE J, UTNE I B, SCHJØLBERG I, et al. Application of fuzzy logic for safe autonomous subsea IMR operations[C]//Proceedings of the 25th European Safety and Reliability Conference. Zurich, Switzerland: ESREL, 2015: 415-422.
    [13] KUCHAR J E, DRUMM A C. The traffic alert and collision avoidance system[J]. Lincoln Laboratory Journal, 2007, 16(2): 277–296.
    [14] ERLIEN S M, FUJITA S, GERDES J C. Shared steering control using safe envelopes for obstacle avoidance and vehicle stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 441–451. doi: 10.1109/TITS.2015.2453404
    [15] WANG H J, ZHAO D H, BIAN X Q, et al. Research on autonomous planning for AUV in unstructured environment[C]//International Conference on Intelligent Computing. Kunming, China: Springer, 2006: 586-599.
    [16] SUH J, KIM B, YI K. Design and evaluation of a driving mode decision algorithm for automated driving vehicle on a motorway[J]. IFAC-PapersOnLine, 2016, 49(11): 115–120. doi: 10.1016/j.ifacol.2016.08.018
    [17] HEGDE J, UTNE I B, SCHJØLBERG I. Development of collision risk indicators for autonomous subsea inspection maintenance and repair[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 440–452. doi: 10.1016/j.jlp.2016.11.002
    [18] HEGDE J, HENRIKSEN E H, UTNE I B, et al. Develop- ment of safety envelopes and subsea traffic rules for auto- nomous remotely operated vehicles[J]. Journal of Loss Prevention in the Process Industries, 2019, 60: 145–158. doi: 10.1016/j.jlp.2019.03.006
    [19] 施生达. 潜艇操纵性[M]. 国防工业出版社, 1995: 174−177.

    SHI S D. Maneuverability of submarine[M]. Beijing: National Defense Industry Press, 1995: 174−177 (in Chinese).
    [20] PRESTERO T. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[D]. Boston, Massachusetts, USA: Massachusetts Institute of Technology, 2009.
  • ZG2533_en.pdf
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  116
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 修回日期:  2022-01-19
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回