Seabed collision emergency decision-making of AUV based on safety domain model
-
摘要:
目的 为了保障复杂未知环境下自主式水下机器人(AUV)的安全,防止意外触底,提出AUV近底动态安全领域模型,建立分级应急响应措施。 方法 建立AUV垂直面运动模型并通过超越试验对比验证,求解主动安全领域及被动安全领域距离,建立AUV近底航行动态安全领域模型,基于该模型设计AUV应急控制系统与应急策略。基于实时纵倾和对底高度状态,计算当前及未来危险系数,通过分配权重系数求得综合危险系数,用于指导AUV应急响应决策。 结果 通过分析湖试定深和定高航行试验,当河床高度相距AUV主动安全领域边界较近时,综合危险系数与河床高度的相关性较强,反之则较弱。结果表明,AUV应急控制系统在起伏地形下作业时能减少应急决策虚警,而在近底航行作业时又能减少应急决策漏警,从而实现在复杂起伏地形下近底航行时的合理应急决策。 结论 基于垂直面运动方程建立的近底安全领域模型与应急响应策略能够用于AUV水下航行近底危险实时预测,可提高AUV水下自主航行的安全性。 Abstract:Objectives To ensure safety and prevent seabed collisions in complex unknown underwater environments, this study proposes a seabed safety domain model and tiered emergency response strategies. Methods A vertical motion simulation model is established and verified by surpassing the test results, then used to calculate the active and passive safety domain distance of an autonomous underwater vehicle (AUV), thereby establishing a seabed safety domain model. An AUV emergency control system and emergency strategies are then built on the basis of the dynamic safety domain model. The trim and distance from the seabed of the AUV are used to calculate the current and future risk factors. Based on the weighted sum, the comprehensive risk factor is employed to provide the AUV with emergency response strategies. Results Lake tests with the AUV sailing at a fixed depth and height show a strong dependency of the comprehensive risk coefficient on seabed height when it is close to the boundary of the AUV's active safety domain. In the opposite case, there is a weak dependency of the comprehensive risk coefficient on seabed height. The results show that the proposed AUV emergency control system can reduce emergency false alarms caused by frequently changing riverbed heights and sailing altitudes close to the seabed. In such cases, reasonable emergency strategies can be realized under complex rough terrain. Conclusions The AUV seabed safety domain model and tiered emergency response strategies based on vertical motion equations proposed herein can be applied to evaluate seabed collision risk in various cases. Finally, this paper provides emergency response strategies to avoid seabed collision accidents, which can enhance the safety of AUV navigation. -
表 1 AUV大地坐标系与附体坐标系变量含义
Table 1. Notation of AUV in earth frame and body frame
位置/m 姿态角/rad 线速度/(m∙s−1) 角速度 力/N 力矩 大地坐标系 ξ轴 x φ $ \dot{x} $ $ \dot{\phi } $ XE KE η轴 y θ $ \dot{y} $ $ \dot{\theta } $ YE ME ζ轴 z ψ $ \dot{{\textit{z}}} $ $ \dot{\varPsi } $ ZE NE 附体坐标系 x轴 $ {x}' $ $ \gamma $ $ u $ $ p $ $ X $ $ K $ y轴 $ {y}' $ $ a $ $ v $ $ q $ $ Y $ $ M $ z轴 $ {{\textit{z}}}' $ $ \beta $ $ w $ $ r $ $ Z $ $ N $ 表 2 超越试验仿真和湖试的特征参数对比
Table 2. Comparison of feature parameters between simulation and lake test for the overtaking maneuver
$ u $/ (m∙s−1) ${\delta _{\rm{r}}}$/(°) $ \theta $/(°) ${\theta }_{{\rm{ov}}}$/(°) ${\xi }_{ {\rm{ov} } }$/m 仿真 湖试 误差/% 仿真 湖试 误差/% 3 10 10 5.83 5.9 1.2 0.988 1.40 29.40 1 20 20 2.49 2.9 14.1 0.100 0.11 9.09 表 3 河床相对AUV轮廓变化趋势及应急触发条件
Table 3. Riverbed change trend and emergency judgment
判断条件1 判断结果1 判断条件2 判断结果2 $ \Delta D < \Delta S $ 河床呈上升趋势 ${\theta _0} \leqslant {\theta _{\rm{r}}}$ 进入应急决策 ${\theta _0} > {\theta _{\rm{r}}}$ 不进入应急决策 $ \Delta D > \Delta S $ 河床呈下降趋势 $\left| { {\theta _0} } \right| \geqslant {\theta _{\rm{r}}}$ 进入应急决策 $\left| { {\theta _0} } \right| < {\theta _{\rm{r}}}$ 不进入应急决策 $ \Delta D = \Delta S $ 河床呈平缓趋势 $ {\theta _0} \leqslant {0^ \circ } $ 进入应急决策 $ {\theta _0} > {0^ \circ } $ 不进入应急决策 表 4 综合危险系数与危险等级的对应关系
Table 4. Corresponding relationship between comprehensive risk factors and risk levels
综合危险系数$ \rho $ 危险等级 <0.25 无危险 0.25~0.5 轻度危险 0.5~0.75 中度危险 >0.75 重度危险 表 5 危险等级与应急响应措施的对应关系
Table 5. Corresponding relationship between risk levels and emergency response measures
危险等级 应急响应措施 推进器停止 满上浮舵 满方向舵 抛载 无危险 否 否 否 否 轻度危险 是 否 否 否 中度危险 是 是 否 否 重度危险 是 是 是 是 -
[1] 冯正平. 国外自治水下机器人发展现状综述[J]. 鱼雷技术, 2005, 13(1): 5–9.FENG Z P. A review of the development of autonomous underwater vehicles (AUVs) in western countries[J]. Torpedo Technology, 2005, 13(1): 5–9 (in Chinese). [2] 徐玉如, 庞永杰, 甘永, 等. 智能水下机器人技术展望[J]. 智能系统学报, 2006, 1(1): 9–16.XU Y R, PANG Y J, GAN Y, et al. AUV-state-of-the-art and prospect[J]. CAAI Transactions on Intelligent Systems, 2006, 1(1): 9–16 (in Chinese). [3] BRITO M P, GRIFFITHS G. A Markov chain state transi-tion approach to establishing critical phases for AUV reliability[J]. IEEE Journal of Oceanic Engineering, 2011, 36(1): 139–149. doi: 10.1109/JOE.2010.2083070 [4] ERNITS J, DEARDEN R, PEBODY M. Automatic fault detection and execution monitoring for AUV missions[C]//2010 IEEE/OES Autonomous Underwater Vehicles. Monterey, CA, USA: IEEE, 2011: 2-4. [5] QUIDU I, HETET A, DUPAS Y, et al. AUV (redermor) obstacle detection and avoidance experimental evaluation[C]//OCEANS 2007 - Europe. Aberdeen, UK: IEEE, 2007: 1–6. [6] FUJII Y, TANAKA K. Traffic capacity[J]. Journal of Navigation, 1971, 24(4): 543–552. doi: 10.1017/S0373463300022384 [7] GOODWIN E M. A statistical study of ship domains[J]. Journal of Navigation, 1975, 28(3): 328–344. doi: 10.1017/S0373463300041230 [8] TAM C K, BUCKNALL R, GREIG A. Review of collision avoidance and path planning methods for ships in close range encounters[J]. Journal of Navigation, 2009, 62(3): 455–476. doi: 10.1017/S0373463308005134 [9] PIETRZYKOWSKI Z, URIASZ J. The ship domain – a criterion of navigational safety assessment in an open sea area[J]. Journal of Navigation, 2009, 62(1): 93–108. doi: 10.1017/S0373463308005018 [10] LEWISON G R G. The risk of a ship encounter leading to a collision[J]. Journal of Navigation, 1978, 31(3): 384–407. doi: 10.1017/S037346330004193X [11] DAVIS P V, DOVE M J, STOCKEL C T. A computer simulation of marine traffic using domains and arenas[J]. Journal of Navigation, 1980, 33(2): 215–222. doi: 10.1017/S0373463300035220 [12] HEGDE J, UTNE I B, SCHJØLBERG I, et al. Application of fuzzy logic for safe autonomous subsea IMR operations[C]//Proceedings of the 25th European Safety and Reliability Conference. Zurich, Switzerland: ESREL, 2015: 415-422. [13] KUCHAR J E, DRUMM A C. The traffic alert and collision avoidance system[J]. Lincoln Laboratory Journal, 2007, 16(2): 277–296. [14] ERLIEN S M, FUJITA S, GERDES J C. Shared steering control using safe envelopes for obstacle avoidance and vehicle stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 441–451. doi: 10.1109/TITS.2015.2453404 [15] WANG H J, ZHAO D H, BIAN X Q, et al. Research on autonomous planning for AUV in unstructured environment[C]//International Conference on Intelligent Computing. Kunming, China: Springer, 2006: 586-599. [16] SUH J, KIM B, YI K. Design and evaluation of a driving mode decision algorithm for automated driving vehicle on a motorway[J]. IFAC-PapersOnLine, 2016, 49(11): 115–120. doi: 10.1016/j.ifacol.2016.08.018 [17] HEGDE J, UTNE I B, SCHJØLBERG I. Development of collision risk indicators for autonomous subsea inspection maintenance and repair[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 440–452. doi: 10.1016/j.jlp.2016.11.002 [18] HEGDE J, HENRIKSEN E H, UTNE I B, et al. Develop- ment of safety envelopes and subsea traffic rules for auto- nomous remotely operated vehicles[J]. Journal of Loss Prevention in the Process Industries, 2019, 60: 145–158. doi: 10.1016/j.jlp.2019.03.006 [19] 施生达. 潜艇操纵性[M]. 国防工业出版社, 1995: 174−177.SHI S D. Maneuverability of submarine[M]. Beijing: National Defense Industry Press, 1995: 174−177 (in Chinese). [20] PRESTERO T. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle[D]. Boston, Massachusetts, USA: Massachusetts Institute of Technology, 2009. -
ZG2533_en.pdf
-