留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外部拘束分布对薄板对接接头焊接失稳变形的影响

周晓丽 易斌 王江超 周方明

周晓丽, 易斌, 王江超, 等. 外部拘束分布对薄板对接接头焊接失稳变形的影响[J]. 中国舰船研究, 2023, 18(2): 168–175 doi: 10.19693/j.issn.1673-3185.02531
引用本文: 周晓丽, 易斌, 王江超, 等. 外部拘束分布对薄板对接接头焊接失稳变形的影响[J]. 中国舰船研究, 2023, 18(2): 168–175 doi: 10.19693/j.issn.1673-3185.02531
ZHOU X L, YI B, WANG J C, et al. Influence of external restraint distribution on welding buckling of thin plate butt joint[J]. Chinese Journal of Ship Research, 2023, 18(2): 168–175 doi: 10.19693/j.issn.1673-3185.02531
Citation: ZHOU X L, YI B, WANG J C, et al. Influence of external restraint distribution on welding buckling of thin plate butt joint[J]. Chinese Journal of Ship Research, 2023, 18(2): 168–175 doi: 10.19693/j.issn.1673-3185.02531

外部拘束分布对薄板对接接头焊接失稳变形的影响

doi: 10.19693/j.issn.1673-3185.02531
基金项目: 国家自然科学基金资助项目(52071151)
详细信息
    作者简介:

    周晓丽,女,1997年生,硕士生。研究方向:薄板焊接失稳变形的预测和控制。E-mail:17863976458@163.com

    易斌,男,1996年生,博士生。研究方向:薄板焊接失稳变形的预测和控制。E-mail:D201980503@hust.edu.cn

    王江超,男,1983年生,博士,副教授。研究方向: 船舶海洋结构物建造工艺力学及力学性能评估。E-mail:WJccn@hust.edu.cn

    通信作者:

    王江超

  • 中图分类号: U671.83

Influence of external restraint distribution on welding buckling of thin plate butt joint

知识共享许可协议
外部拘束分布对薄板对接接头焊接失稳变形的影响周晓丽,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  由于薄板在焊接时极易产生失稳变形,从而影响建造周期、成本及材料使用性能,因此需通过施加外部拘束实现对薄板对接接头焊接失稳变形的控制。  方法  首先,进行外部拘束下的薄板对接焊试验,使用光学面扫描方法测量其焊后面外变形;同时,建立自由状态和外部拘束状态下的有限元模型,使用热弹塑性有限元(TEP FE)方法分析两种状态下薄板对接焊的热力学现象;最后,研究不同外部拘束分布对接头焊接失稳变形的影响,并从纵向塑性应变和纵向收缩力的角度分析其控制焊接失稳变形的原因。  结果  试验对应模型的面外变形结果与测量结果吻合良好,且小于自由状态下的面外变形结果;施加外部拘束使焊缝及其附近金属的纵向塑性应变减小,薄板所受的纵向收缩力减小。  结论  研究结果验证了外部拘束能有效地控制焊接失稳变形,且外部拘束的分布不同对焊接失稳变形的控制效果不同。
  • 图  焊接试验时薄板上的夹具分布和尺寸示意图

    Figure  1.  Fixtures arranged on the thin plate and dimensions for welding test

    图  薄板对接焊后面外变形云图

    Figure  2.  Out-of-plane deformation contours of thin plate after butt welding

    图  对接接头焊缝处宏观金相

    Figure  3.  Macrographic and metallographic inspection of butt welded joint

    图  外部拘束下薄板的有限元模型

    Figure  4.  Finite element model of thin plate under external restraint

    图  自由状态下薄板的有限元模型

    Figure  5.  Finite element model of thin plate in free state

    图  熔池形状

    Figure  6.  Molten pool shape

    图  两种状态下薄板的面外变形云图

    Figure  7.  Out-of-plane deformation contours of thin plate under two states

    图  线1的面外变形对比

    Figure  8.  Comparison of out-of-plane deformation of line 1

    图  不同外部拘束分布下薄板的有限元模型图

    Figure  9.  Finite element model diagram of thin plate under different external restraint distributions

    图  10  拘束释放后薄板的面外变形云图

    Figure  10.  Out-of-plane deformation contours of thin plate after release of restraint

    图  11  4种状态下线1的面外变形对比

    Figure  11.  Out-of-plane deformation comparison of line 1 under four states

    图  12  薄板纵向塑性应变分布云图

    Figure  12.  Distribution contours of longitudinal plastic strain of thin plate

    图  13  4种状态下X=160 mm和X=250 mm位置处横截面的纵向塑性应变分布云图

    Figure  13.  Distribution contours of longitudinal plastic strain of cross-section at X=160 mm and X=250 mm under four states

    图  14  两位置处横截面上表面纵向塑性应变对比

    Figure  14.  Comparison of longitudinal plastic strain on the upper surface of cross-section at two positions

    图  15  各个横截面的纵向固有变形分量

    Figure  15.  Longitudinal inherent deformation component of each cross-section

    表  薄板对接焊焊接工艺参数

    Table  1.  Process parameters of thin plate butt welding

    工艺电流/A电压/V速度/(mm·min−1气流量/(L·min−1脉冲/Hz
    定位24023.91 00020.45
    单面焊24023.960020.45
    下载: 导出CSV

    表  外部拘束分布形式描述

    Table  2.  Descriptions of external restraint distribution

    分布形式描述
    拘束分布1与薄板对接焊试验外部拘束分布一致
    拘束分布2中间两外部拘束置于薄板中部面外变形最大处
    拘束分布3中间两外部拘束置于中部面外变形最大处的一侧
    下载: 导出CSV

    表  纵向固有变形分量的计算值

    Table  3.  The calculated values of the longitudinal inherent deformation component

    状态纵向固有收缩/mm纵向弯曲/rad纵向收缩力/kN
    自由状态0.158830.03155126.25
    拘束分布10.118570.0150694.49
    拘束分布20.108480.0141885.75
    拘束分布30.111680.0146988.93
    下载: 导出CSV
  • [1] 叶琦. 焊接技术[M]. 北京: 化学工业出版社, 2005: 1.

    YE Q. Welding Technology[M]. Beijing: Chemical Industry Press, 2005: 1 (in Chinese).
    [2] 王江超. 薄板船体结构焊接失稳变形的数值分析进展[J]. 造船技术, 2017(2): 73–78, 83.

    WANG J C. Progress of numerical analysis on welding buckling of thin plate ship structures[J]. Marine Technology, 2017(2): 73–78, 83 (in Chinese).
    [3] ADAK M, MANDAL N R. Numerical and experimental study of mitigation of welding distortion[J]. Applied Mathematical Modelling, 2010, 34(1): 146–158. doi: 10.1016/j.apm.2009.03.035
    [4] SCHENK T, RICHARDSON I M, KRASKA M, et al. A study on the influence of clamping on welding distortion[J]. Computational Materials Science, 2009, 45(4): 999–1005. doi: 10.1016/j.commatsci.2009.01.004
    [5] MA N S, HUANG H, MURAKAWA H. Effect of jig constraint position and pitch on welding deformation[J]. Journal of Materials Processing Technology, 2015, 221: 154–162. doi: 10.1016/j.jmatprotec.2015.02.022
    [6] WANG J C, SHIBAHARA M, ZHANG X D, et al. Investigation on twisting distortion of thin plate stiffened structure under welding[J]. Journal of Materials Processing Technology, 2012, 212(8): 1705–1715. doi: 10.1016/j.jmatprotec.2012.03.015
    [7] PEARCE S V, LINTON V M. Neutron diffraction measurement of residual stress in high strength, highly res-trained, thick section steel welds[J]. Physica B:Condensed Matter, 2006, 385-386: 590–593. doi: 10.1016/j.physb.2006.05.368
    [8] 张增磊, 史清宇, 鄢东洋, 等. 夹具拘束模型在焊接过程有限元分析中的建立及应用[J]. 金属学报, 2010, 46(2): 189–194.

    ZHANG Z L, SHI Q Y, YAN D Y, et al. Establishment and application of fixture constraint models in finite element analysis of welding process[J]. Acta Metallurgica Sinica, 2010, 46(2): 189–194 (in Chinese).
    [9] 周一俊, 邓德安, 孙加民. 拘束对Q235薄板堆焊接头焊接变形的影响[C]//中国机械工程学会焊接学会第十八次全国焊接学术会议论文集——S04计算机辅助焊接工程. 南昌: 中国机械工程学会, 2013: 129-133.

    ZHOU Y J, DENG D A, SUN J M. Effect of constraint on welding deformation of Q235 sheet surfacing joint[C]//Proceedings of the 18th National Welding Confer- ence of the Welding Society of China Mechanical Engineer- ing Society—S04 Computer-aided welding Engineering. Nanchang: Chinese Society of Mechanical Engineering, 2013: 129-133 (in Chinese).
    [10] 易斌, 史雄华, 殷咸青, 等. 轻量化造船中薄板对接焊失稳及其临界条件[J]. 造船技术, 2019(5): 6–13. doi: 10.3969/j.issn.1000-3878.2019.05.002

    YI B, SHI X H, YIN X Q, et al. Welding buckling behavior and critical condition of thin plates butt welding in lightweight shipbuilding[J]. Marine Technology, 2019(5): 6–13 (in Chinese). doi: 10.3969/j.issn.1000-3878.2019.05.002
    [11] CHIOCCA A, FRENDO F, BERTINI L. Evaluation of residual stresses in a pipe-to-plate welded joint by means of uncoupled thermal-structural simulation and experimental tests[J]. International Journal of Mechanical Sciences, 2021, 199: 106401. doi: 10.1016/j.ijmecsci.2021.106401
    [12] 王江超, 史雄华, 易斌, 等. 基于固有变形的薄板船体结构焊接失稳变形研究综述[J]. 中国造船, 2017, 58(2): 230–239. doi: 10.3969/j.issn.1000-4882.2017.02.024

    WANG J C, SHI X H, YI B, et al. A review on welding buckling of thin plate ship structures based on inherent deformation[J]. Shipbuilding of China, 2017, 58(2): 230–239 (in Chinese). doi: 10.3969/j.issn.1000-4882.2017.02.024
    [13] 孙向伟, 殷咸青, 王江超, 等. 采用三维光学测量技术对薄板焊接失稳变形的分析[J]. 焊接学报, 2013, 34(6): 109–112.

    SUN X W, YIN X Q, WANG J C, et al. Analysis of buckling distortion caused by welding using 3D optical measurement technology[J]. Transactions of the China Welding Institution, 2013, 34(6): 109–112 (in Chinese).
    [14] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299–305. doi: 10.1007/BF02667333
    [15] 上田幸雄, 村川英一, 麻宁绪. 焊接变形和残余应力的数值计算方法与程序[M]. 罗宇, 王江超, 译. 成都: 四川大学出版社, 2008: 9.

    UEDA Y, MURAKAWA H, MA N S. Numerical calculation method and program for welding deformation and residual stress[M]. LUO Y, WANG J C, trans. Chengdu: Sichuan University Press, 2008: 9 (in Chinese).
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  86
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 修回日期:  2022-01-05
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回