Influence of external restraint distribution on welding buckling of thin plate butt joint
-
摘要:
目的 由于薄板在焊接时极易产生失稳变形,从而影响建造周期、成本及材料使用性能,因此需通过施加外部拘束实现对薄板对接接头焊接失稳变形的控制。 方法 首先,进行外部拘束下的薄板对接焊试验,使用光学面扫描方法测量其焊后面外变形;同时,建立自由状态和外部拘束状态下的有限元模型,使用热弹塑性有限元(TEP FE)方法分析两种状态下薄板对接焊的热力学现象;最后,研究不同外部拘束分布对接头焊接失稳变形的影响,并从纵向塑性应变和纵向收缩力的角度分析其控制焊接失稳变形的原因。 结果 试验对应模型的面外变形结果与测量结果吻合良好,且小于自由状态下的面外变形结果;施加外部拘束使焊缝及其附近金属的纵向塑性应变减小,薄板所受的纵向收缩力减小。 结论 研究结果验证了外部拘束能有效地控制焊接失稳变形,且外部拘束的分布不同对焊接失稳变形的控制效果不同。 Abstract:Objectives It is easy to produce buckling distortion when welding thin plate butt joints, which affects the construction period, cost and performance, but this can be controlled by applying external restraints. Methods First, a butt welding test of a thin plate under external restraints is carried out, and the out-of-plane deformation is measured by the optical surface scanning method. At the same time, finite element (FE) models in a free state and external restraint state are established, and the thermal mechanical phenomena of the two models are subjected to thermal-elastic-plastic FE analysis (TEP FE). The influence of different external restraint distributions on the welding buckling distortion of the joints is then studied, and reasons for controlling welding buckling distortion are analyzed from the perspective of longitudinal plastic strain and longitudinal contraction force. Results The out-of-plane deformation of the corresponding model is in good agreement with the measured results, and milder than the out-of-plane deformation of the model in a free state. When external restraints are applied, the longitudinal plastic strain of the weld and its adjacent metal decreases, and the longitudinal contraction force of the thin plate also decreases. Conclusions The results verify that external restraints can effectively control welding buckling distortion, and the control effects are different depending on the external restraint distribution. -
表 1 薄板对接焊焊接工艺参数
Table 1. Process parameters of thin plate butt welding
工艺 电流/A 电压/V 速度/(mm·min−1) 气流量/(L·min−1) 脉冲/Hz 定位 240 23.9 1 000 20.4 5 单面焊 240 23.9 600 20.4 5 表 2 外部拘束分布形式描述
Table 2. Descriptions of external restraint distribution
分布形式 描述 拘束分布1 与薄板对接焊试验外部拘束分布一致 拘束分布2 中间两外部拘束置于薄板中部面外变形最大处 拘束分布3 中间两外部拘束置于中部面外变形最大处的一侧 表 3 纵向固有变形分量的计算值
Table 3. The calculated values of the longitudinal inherent deformation component
状态 纵向固有收缩/mm 纵向弯曲/rad 纵向收缩力/kN 自由状态 0.15883 0.03155 126.25 拘束分布1 0.11857 0.01506 94.49 拘束分布2 0.10848 0.01418 85.75 拘束分布3 0.11168 0.01469 88.93 -
[1] 叶琦. 焊接技术[M]. 北京: 化学工业出版社, 2005: 1.YE Q. Welding Technology[M]. Beijing: Chemical Industry Press, 2005: 1 (in Chinese). [2] 王江超. 薄板船体结构焊接失稳变形的数值分析进展[J]. 造船技术, 2017(2): 73–78, 83.WANG J C. Progress of numerical analysis on welding buckling of thin plate ship structures[J]. Marine Technology, 2017(2): 73–78, 83 (in Chinese). [3] ADAK M, MANDAL N R. Numerical and experimental study of mitigation of welding distortion[J]. Applied Mathematical Modelling, 2010, 34(1): 146–158. doi: 10.1016/j.apm.2009.03.035 [4] SCHENK T, RICHARDSON I M, KRASKA M, et al. A study on the influence of clamping on welding distortion[J]. Computational Materials Science, 2009, 45(4): 999–1005. doi: 10.1016/j.commatsci.2009.01.004 [5] MA N S, HUANG H, MURAKAWA H. Effect of jig constraint position and pitch on welding deformation[J]. Journal of Materials Processing Technology, 2015, 221: 154–162. doi: 10.1016/j.jmatprotec.2015.02.022 [6] WANG J C, SHIBAHARA M, ZHANG X D, et al. Investigation on twisting distortion of thin plate stiffened structure under welding[J]. Journal of Materials Processing Technology, 2012, 212(8): 1705–1715. doi: 10.1016/j.jmatprotec.2012.03.015 [7] PEARCE S V, LINTON V M. Neutron diffraction measurement of residual stress in high strength, highly res-trained, thick section steel welds[J]. Physica B:Condensed Matter, 2006, 385-386: 590–593. doi: 10.1016/j.physb.2006.05.368 [8] 张增磊, 史清宇, 鄢东洋, 等. 夹具拘束模型在焊接过程有限元分析中的建立及应用[J]. 金属学报, 2010, 46(2): 189–194.ZHANG Z L, SHI Q Y, YAN D Y, et al. Establishment and application of fixture constraint models in finite element analysis of welding process[J]. Acta Metallurgica Sinica, 2010, 46(2): 189–194 (in Chinese). [9] 周一俊, 邓德安, 孙加民. 拘束对Q235薄板堆焊接头焊接变形的影响[C]//中国机械工程学会焊接学会第十八次全国焊接学术会议论文集——S04计算机辅助焊接工程. 南昌: 中国机械工程学会, 2013: 129-133.ZHOU Y J, DENG D A, SUN J M. Effect of constraint on welding deformation of Q235 sheet surfacing joint[C]//Proceedings of the 18th National Welding Confer- ence of the Welding Society of China Mechanical Engineer- ing Society—S04 Computer-aided welding Engineering. Nanchang: Chinese Society of Mechanical Engineering, 2013: 129-133 (in Chinese). [10] 易斌, 史雄华, 殷咸青, 等. 轻量化造船中薄板对接焊失稳及其临界条件[J]. 造船技术, 2019(5): 6–13. doi: 10.3969/j.issn.1000-3878.2019.05.002YI B, SHI X H, YIN X Q, et al. Welding buckling behavior and critical condition of thin plates butt welding in lightweight shipbuilding[J]. Marine Technology, 2019(5): 6–13 (in Chinese). doi: 10.3969/j.issn.1000-3878.2019.05.002 [11] CHIOCCA A, FRENDO F, BERTINI L. Evaluation of residual stresses in a pipe-to-plate welded joint by means of uncoupled thermal-structural simulation and experimental tests[J]. International Journal of Mechanical Sciences, 2021, 199: 106401. doi: 10.1016/j.ijmecsci.2021.106401 [12] 王江超, 史雄华, 易斌, 等. 基于固有变形的薄板船体结构焊接失稳变形研究综述[J]. 中国造船, 2017, 58(2): 230–239. doi: 10.3969/j.issn.1000-4882.2017.02.024WANG J C, SHI X H, YI B, et al. A review on welding buckling of thin plate ship structures based on inherent deformation[J]. Shipbuilding of China, 2017, 58(2): 230–239 (in Chinese). doi: 10.3969/j.issn.1000-4882.2017.02.024 [13] 孙向伟, 殷咸青, 王江超, 等. 采用三维光学测量技术对薄板焊接失稳变形的分析[J]. 焊接学报, 2013, 34(6): 109–112.SUN X W, YIN X Q, WANG J C, et al. Analysis of buckling distortion caused by welding using 3D optical measurement technology[J]. Transactions of the China Welding Institution, 2013, 34(6): 109–112 (in Chinese). [14] GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299–305. doi: 10.1007/BF02667333 [15] 上田幸雄, 村川英一, 麻宁绪. 焊接变形和残余应力的数值计算方法与程序[M]. 罗宇, 王江超, 译. 成都: 四川大学出版社, 2008: 9.UEDA Y, MURAKAWA H, MA N S. Numerical calculation method and program for welding deformation and residual stress[M]. LUO Y, WANG J C, trans. Chengdu: Sichuan University Press, 2008: 9 (in Chinese). -