留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于功率流的复合材料层合板连接节点振动传递特性

武大江 梅志远 周振龙

武大江, 梅志远, 周振龙. 基于功率流的复合材料层合板连接节点振动传递特性[J]. 中国舰船研究, 2023, 18(2): 114–120 doi: 10.19693/j.issn.1673-3185.02527
引用本文: 武大江, 梅志远, 周振龙. 基于功率流的复合材料层合板连接节点振动传递特性[J]. 中国舰船研究, 2023, 18(2): 114–120 doi: 10.19693/j.issn.1673-3185.02527
WU D J, MEI Z Y, ZHOU Z L. Vibration transmission characteristics of composite laminate joints based on power flow[J]. Chinese Journal of Ship Research, 2023, 18(2): 114–120 doi: 10.19693/j.issn.1673-3185.02527
Citation: WU D J, MEI Z Y, ZHOU Z L. Vibration transmission characteristics of composite laminate joints based on power flow[J]. Chinese Journal of Ship Research, 2023, 18(2): 114–120 doi: 10.19693/j.issn.1673-3185.02527

基于功率流的复合材料层合板连接节点振动传递特性

doi: 10.19693/j.issn.1673-3185.02527
基金项目: 国家自然科学基金资助项目(51609252,51479205)
详细信息
    作者简介:

    武大江,男,1990年生,博士生,助理工程师。研究方向:舰船结构强度与振动。E-mail:tlbsjagk@sina.com

    梅志远,男,1973年生,博士,教授,博士生导师。研究方向:船用复合材料结构设计与应用。E-mail:zhiyuan_mei@163.com

    通信作者:

    梅志远

  • 中图分类号: U663.9+9

Vibration transmission characteristics of composite laminate joints based on power flow

知识共享许可协议
基于功率流的复合材料层合板连接节点振动传递特性武大江,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为了研究复合材料层合板连接节点的振动传递特性,提出一种采用有限元功率流法并结合功率流可视化技术的分析方法。  方法  首先,验证用有限元实体单元功率流描述板壳振动的有效性;然后,引入功率流传递率评价指标,提出有限元模型功率流传递率的计算方法,并以导纳功率流法计算结果为参照来验证其有效性;最后,建立嵌入式连接和螺钉连接这2种复合材料层合板的连接模型,计算其功率流传递率曲线和典型功率流矢量图。  结果  对比验证结果表明,2种连接模型的振动传递路径和功率流传递率存在明显差异。  结论  有限元功率流法直观反映了连接结构的振动传递能力及振动能量传递路径,可为复合材料结构设计提供参考。
  • 图  功率流矢量图对比

    Figure  1.  Comparison of power flow cloud pictures

    图  L形板有限元模型

    Figure  2.  Finite element model of L-shaped plate

    图  功率流传递率对比

    Figure  3.  Comparison of power transmission efficiency

    图  连接截面示意图

    Figure  4.  Section diagram of the connecting structure

    图  复合材料层合板连接有限元模型

    Figure  5.  Finite element model of two composite laminate connection structure

    图  功率流传递率对比

    Figure  6.  Comparison of power transmission efficiency

    图  振动位移云图

    Figure  7.  Displacement contours of structural vibration

    图  螺钉连接形式的功率流分析

    Figure  8.  Power flow analysis of screw joints

    图  功率流矢量图对比

    Figure  9.  Comparison of power flow vector diagram

    图  10  等长功率流矢量图对比

    Figure  10.  Comparison of uniform power flow vector diagram

    表  面板材料属性

    Table  1.  Material properties of composite panel

    属性名称数值
    E1E2 /GPa18.5
    E3/GPa6
    μ120.12
    μ13μ230.3
    G12/GPa3.75
    G13G23/GPa6.75
    下载: 导出CSV
  • [1] 马思敏. 复合材料T型连接接头力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    MA S M. The research on mechanical behaviors of composite T-joint[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese).
    [2] 肖雪瑞, 邱伟强, 马武伟, 等. 夹芯复合材料T型连接结构悬臂弯曲强度特性分析[J]. 玻璃钢/复合材料, 2018(5): 41–47. doi: 10.3969/j.issn.1003-0999.2018.05.006

    XIAO X R, QIU W Q, MA W W, et al. Research of lateral bending strength of sandwich composite materials T-joint[J]. Fiber Reinforced Plastics/Composites, 2018(5): 41–47 (in Chinese). doi: 10.3969/j.issn.1003-0999.2018.05.006
    [3] GUO S J, LI W H. Numerical analysis and experiment of sandwich T-joint structure reinforced by composite fasteners[J]. Composites Part B:Engineering, 2020, 199: 108288. doi: 10.1016/j.compositesb.2020.108288
    [4] 唐宇航, 梅志远, 陈志坚. 船用钢/复合材料组合系统的内损耗组成分析[J]. 振动、测试与诊断, 2019, 39(1): 15–24. doi: 10.16450/j.cnki.issn.1004-6801.2019.01.003

    TANG Y H, MEI Z Y, CHEN Z J. Composition analysis of damping loss of steel/composite materials composite structure for ships[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(1): 15–24 (in Chinese). doi: 10.16450/j.cnki.issn.1004-6801.2019.01.003
    [5] 高佳佳, 楚珑晟. 纤维增强树脂基复合材料连接技术研究现状与展望[J]. 玻璃钢/复合材料, 2018(2): 101–108. doi: 10.3969/j.issn.1003-0999.2018.02.018

    GAO J J, CHU L S. Present situation and prospect of research on the join technology of composite materials[J]. Fiber Reinforced Plastics/Composites, 2018(2): 101–108 (in Chinese). doi: 10.3969/j.issn.1003-0999.2018.02.018
    [6] 张彤彤, 陶沙, 吴健. 海洋平台上层建筑振动传递仿真及试验研究[J]. 噪声与振动控制, 2021, 41(4): 198–202,263. doi: 10.3969/j.issn.1006-1355.2021.04.030

    ZHANG T T, TAO S, WU J. Simulation and experimental research of vibration transmission of offshore platform superstructures[J]. Noise and Vibration Control, 2021, 41(4): 198–202,263 (in Chinese). doi: 10.3969/j.issn.1006-1355.2021.04.030
    [7] 陈美霞, 陈琦. 简化双层底结构振动传递及抑制特性分析[J]. 船舶力学, 2021, 25(1): 111–119. doi: 10.3969/j.issn.1007-7294.2021.01.013

    CHEN M X, CHEN Q. Analysis of the vibration transmission and impediment characteristics of simplified double bottoms[J]. Journal of Ship Mechanics, 2021, 25(1): 111–119 (in Chinese). doi: 10.3969/j.issn.1007-7294.2021.01.013
    [8] 曹颖. 连接结构微振动传递机理实验探究[D]. 北京: 北京理工大学, 2015.

    CAO Y. Experimental research on the mechanism of micro-vibration transmission in connecting structures[D]. Beijing: Beijing Institute of Technology, 2015 (in Chinese).
    [9] NOISEUX D U. Measurement of power flow in uniform beams and plates[J]. The Journal of the Acoustical Society of America, 1970, 47(1B): 238. doi: 10.1121/1.1911472
    [10] GAVRIĆ L, PAVIĆ G. A finite element method for computation of structural intensity by the normal mode approach[J]. Journal of Sound and Vibration, 1993, 164(1): 29–43. doi: 10.1006/jsvi.1993.1194
    [11] 朱翔, 李天匀, 赵耀, 等. 基于有限元的损伤结构功率流可视化研究[J]. 机械工程学报, 2009, 45(2): 132–137. doi: 10.3901/JME.2009.02.132

    ZHU X, LI T Y, ZHAO Y, et al. Visualization research on the power flow characteristics of damaged structures based on the finite element method[J]. Journal of Mechanical Engineering, 2009, 45(2): 132–137 (in Chinese). doi: 10.3901/JME.2009.02.132
    [12] 吴梓峰. 结构振动功率流流向控制方法及其应用[D]. 广州: 华南理工大学, 2017.

    WU Z F. Vibrational power flow guide control method of structures and its application[D]. Guangzhou: South China University of Technology, 2017 (in Chinese).
    [13] 马英群. 基于结构声强可视化的航空发动机转子–支承–机匣耦合系统振动能量传递特性研究[D]. 北京: 中国科学院大学, 2020.

    MA Y Q. Investigation on vibration energy transmission characteristics of aero-engine rotor-support-casing coupling system based on visualization of structural acoustic intensity[D]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese).
    [14] TRAN T Q N, LEE H P, LIM S P. Structural intensity analysis of thin laminated composite plates subjected to thermally induced vibration[J]. Composite Structures, 2007, 78(1): 70–83. doi: 10.1016/j.compstruct.2005.08.019
    [15] KHUN M S, LEE H P, LIM S P. Structural intensity in plates with multiple discrete and distributed spring–dashpot systems[J]. Journal of Sound and Vibration, 2004, 276(3–5): 627–648. doi: 10.1016/j.jsv.2003.08.002
    [16] 朱石坚, 何琳. 船舶机械振动控制[M]. 北京: 国防工业出版社, 2006.

    ZHU S J, HE L. Vibration Control of Onboard Machinery[M]. Beijng: National Defense Industry Press, 2006 (in Chinese).
    [17] CUSCHIERI J M. Structural power-flow analysis using a mobility approach of an L-shaped plate[J]. The Journal of the Acoustical Society of America, 1990, 87(3): 1159. doi: 10.1121/1.398789
  • ZG2527_en.pdf
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1513
  • HTML全文浏览量:  82
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2022-01-04
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回