Vibration transmission characteristics of composite laminate joints based on power flow
-
摘要:
目的 为了研究复合材料层合板连接节点的振动传递特性,提出一种采用有限元功率流法并结合功率流可视化技术的分析方法。 方法 首先,验证用有限元实体单元功率流描述板壳振动的有效性;然后,引入功率流传递率评价指标,提出有限元模型功率流传递率的计算方法,并以导纳功率流法计算结果为参照来验证其有效性;最后,建立嵌入式连接和螺钉连接这2种复合材料层合板的连接模型,计算其功率流传递率曲线和典型功率流矢量图。 结果 对比验证结果表明,2种连接模型的振动传递路径和功率流传递率存在明显差异。 结论 有限元功率流法直观反映了连接结构的振动传递能力及振动能量传递路径,可为复合材料结构设计提供参考。 Abstract:Objectives In order to investigate the influence of joints in composite laminate plates on the vibration transfer characteristics of structures, this study uses power flow based on the finite element method (FEM) and a related visualization technique. Methods First, a method that describes plate vibration by power flow in solid elements is proven to be feasible, then power flow transmission efficiency is introduced and a method of calculating it in a finite element model is proposed and verified by the admittance power flow method. Finally, two joint simulations of embedded joints and screw joints are obtained, as well as the power flow transmission efficiency curve and typical power flow vector diagram. Results The results show significant differences in vibration transmission and power flow transmission efficiency between the two models. Conclusions Power flow based on FEM can directly reflect the vibration energy transmission path of a connected structure, which can provide useful references for the design of composite structures. -
表 1 面板材料属性
Table 1. Material properties of composite panel
属性名称 数值 E1,E2 /GPa 18.5 E3/GPa 6 μ12 0.12 μ13,μ23 0.3 G12/GPa 3.75 G13,G23/GPa 6.75 -
[1] 马思敏. 复合材料T型连接接头力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.MA S M. The research on mechanical behaviors of composite T-joint[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). [2] 肖雪瑞, 邱伟强, 马武伟, 等. 夹芯复合材料T型连接结构悬臂弯曲强度特性分析[J]. 玻璃钢/复合材料, 2018(5): 41–47. doi: 10.3969/j.issn.1003-0999.2018.05.006XIAO X R, QIU W Q, MA W W, et al. Research of lateral bending strength of sandwich composite materials T-joint[J]. Fiber Reinforced Plastics/Composites, 2018(5): 41–47 (in Chinese). doi: 10.3969/j.issn.1003-0999.2018.05.006 [3] GUO S J, LI W H. Numerical analysis and experiment of sandwich T-joint structure reinforced by composite fasteners[J]. Composites Part B:Engineering, 2020, 199: 108288. doi: 10.1016/j.compositesb.2020.108288 [4] 唐宇航, 梅志远, 陈志坚. 船用钢/复合材料组合系统的内损耗组成分析[J]. 振动、测试与诊断, 2019, 39(1): 15–24. doi: 10.16450/j.cnki.issn.1004-6801.2019.01.003TANG Y H, MEI Z Y, CHEN Z J. Composition analysis of damping loss of steel/composite materials composite structure for ships[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(1): 15–24 (in Chinese). doi: 10.16450/j.cnki.issn.1004-6801.2019.01.003 [5] 高佳佳, 楚珑晟. 纤维增强树脂基复合材料连接技术研究现状与展望[J]. 玻璃钢/复合材料, 2018(2): 101–108. doi: 10.3969/j.issn.1003-0999.2018.02.018GAO J J, CHU L S. Present situation and prospect of research on the join technology of composite materials[J]. Fiber Reinforced Plastics/Composites, 2018(2): 101–108 (in Chinese). doi: 10.3969/j.issn.1003-0999.2018.02.018 [6] 张彤彤, 陶沙, 吴健. 海洋平台上层建筑振动传递仿真及试验研究[J]. 噪声与振动控制, 2021, 41(4): 198–202,263. doi: 10.3969/j.issn.1006-1355.2021.04.030ZHANG T T, TAO S, WU J. Simulation and experimental research of vibration transmission of offshore platform superstructures[J]. Noise and Vibration Control, 2021, 41(4): 198–202,263 (in Chinese). doi: 10.3969/j.issn.1006-1355.2021.04.030 [7] 陈美霞, 陈琦. 简化双层底结构振动传递及抑制特性分析[J]. 船舶力学, 2021, 25(1): 111–119. doi: 10.3969/j.issn.1007-7294.2021.01.013CHEN M X, CHEN Q. Analysis of the vibration transmission and impediment characteristics of simplified double bottoms[J]. Journal of Ship Mechanics, 2021, 25(1): 111–119 (in Chinese). doi: 10.3969/j.issn.1007-7294.2021.01.013 [8] 曹颖. 连接结构微振动传递机理实验探究[D]. 北京: 北京理工大学, 2015.CAO Y. Experimental research on the mechanism of micro-vibration transmission in connecting structures[D]. Beijing: Beijing Institute of Technology, 2015 (in Chinese). [9] NOISEUX D U. Measurement of power flow in uniform beams and plates[J]. The Journal of the Acoustical Society of America, 1970, 47(1B): 238. doi: 10.1121/1.1911472 [10] GAVRIĆ L, PAVIĆ G. A finite element method for computation of structural intensity by the normal mode approach[J]. Journal of Sound and Vibration, 1993, 164(1): 29–43. doi: 10.1006/jsvi.1993.1194 [11] 朱翔, 李天匀, 赵耀, 等. 基于有限元的损伤结构功率流可视化研究[J]. 机械工程学报, 2009, 45(2): 132–137. doi: 10.3901/JME.2009.02.132ZHU X, LI T Y, ZHAO Y, et al. Visualization research on the power flow characteristics of damaged structures based on the finite element method[J]. Journal of Mechanical Engineering, 2009, 45(2): 132–137 (in Chinese). doi: 10.3901/JME.2009.02.132 [12] 吴梓峰. 结构振动功率流流向控制方法及其应用[D]. 广州: 华南理工大学, 2017.WU Z F. Vibrational power flow guide control method of structures and its application[D]. Guangzhou: South China University of Technology, 2017 (in Chinese). [13] 马英群. 基于结构声强可视化的航空发动机转子–支承–机匣耦合系统振动能量传递特性研究[D]. 北京: 中国科学院大学, 2020.MA Y Q. Investigation on vibration energy transmission characteristics of aero-engine rotor-support-casing coupling system based on visualization of structural acoustic intensity[D]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese). [14] TRAN T Q N, LEE H P, LIM S P. Structural intensity analysis of thin laminated composite plates subjected to thermally induced vibration[J]. Composite Structures, 2007, 78(1): 70–83. doi: 10.1016/j.compstruct.2005.08.019 [15] KHUN M S, LEE H P, LIM S P. Structural intensity in plates with multiple discrete and distributed spring–dashpot systems[J]. Journal of Sound and Vibration, 2004, 276(3–5): 627–648. doi: 10.1016/j.jsv.2003.08.002 [16] 朱石坚, 何琳. 船舶机械振动控制[M]. 北京: 国防工业出版社, 2006.ZHU S J, HE L. Vibration Control of Onboard Machinery[M]. Beijng: National Defense Industry Press, 2006 (in Chinese). [17] CUSCHIERI J M. Structural power-flow analysis using a mobility approach of an L-shaped plate[J]. The Journal of the Acoustical Society of America, 1990, 87(3): 1159. doi: 10.1121/1.398789 -
ZG2527_en.pdf
-