Optimization of the section structure of container ship based on artificial bee colony algorithm and finite element strength calculation
-
摘要:
目的 现有基于有限元强度计算的结构优化研究大多采用改写单元节点信息文件来实现参数化建模的方法,为解决在船体剖面结构优化过程中难以考虑型材数量变化的问题,提出一种基于参数化几何建模分析和人工蜂群(ABC)算法的船舯剖面结构优化方法。 方法 首先,在Matlab平台编写蜂群算法,并基于ABAQUS内核语言Python建立能够在其CAE模块中生成几何模型的脚本文件;其次,建立能够提交有限元计算和读取结果的Python脚本文件,通过将算法每次生成的解改写到脚本对应位置完成几何模型的更新,后台调用ABAQUS并依次运行脚本文件;最后,将计算结果返回到Matlab平台中进行校核,完成参数化几何建模与有限元分析。 结果 以4600 TEU集装箱船在总纵弯矩作用下的舱段剖面结构优化为例验证了该方法的可行性,得到集装箱船舱段结构减重达18.7%。 结论 经对比分析,在设定条件下基于有限元的优化方法比基于规范的优化方法更加充分。 Abstract:Objectives The method of rewriting the element node information file to realize parametric modeling is commonly employed in existing structural optimization based on finite element (FE) strength calculation, but it remains difficult to consider variations of the profile number in hull section structure optimization. To this end, a container ship structure optimization method based on FE strength calculation is proposed using an artificial bee colony (ABC) algorithm and parametric FE modeling method. Methods First, the bee colony algorithm is written on the Matlab platform, and a script file which can generate the geometric model in its CAE module is established based on the ABAQUS kernel in the Python language. A Python script file which can submit the FE calculation and read the results is established. The geometric model is updated by rewriting the solution generated by the algorithm to the corresponding position in the script, then ABAQUS is called in the background and the script files are run in turn. Finally, the calculation results are returned to Matlab for verification, and the parametric geometric modeling and FE analysis are completed. Results The feasibility of this method is verified by taking the section structure optimization of a 4600 TEU container ship as an example. It is found that the weight reduction of the container ship cabin structure reaches 18.7%. Conclusions When the results of the FE strength optimization and code optimization are compared and analyzed, under the set conditions, the FE optimization method is more sufficient than that based on code. -
表 1 变量范围取值原则
Table 1. Principle for variables selection range
变量 下限 上限 nu nu0−2 nu0+2 t 0.5t0 1.5t0 h 0.5h0 2h0 t1 0.5t10 1.5t10 l 0.5l0 2l0 t2 0.5t20 1.5t20 表 2 舯部船底区域设计变量及优化结果
Table 2. Design variables and optimization results for midship bottom area
设计变量 优化前 规范优化后 变化率/% 有限元优化后 变化率/% 内底板厚/mm 14 11.5 −17.9 11.0 −21.4 上下型材数量/个 1 1 0 1 0 内底型材/mm 160×10.0 140×12.5 +9.4 140×9.5 −16.9 中底桁厚度/mm 13.0 11.5 −11.5 11.0 −15.4 外底板厚/mm 18.0 17.5 −2.8 15.5 −13.9 外底型材/mm 240×10.0 220×12.5 +14.6 220×9.5 −12.9 表 3 侧部船底区域设计变量及优化结果
Table 3. Design variables and optimization results for lateral bottom area
设计变量 优化前 规范优化后 变化率/% 有限元优化后 变化率/% 内底板厚/mm 14 12 −14.3 11 −21.4 上下型材数量/个 2 3 +50.0 3 +50.0 内底型材/mm 260×11 250×10 −12.6 250×10 −12.6 旁底桁厚度/mm 11.5 9.0 −21.7 9.5 −17.4 旁底桁型材数量/个 2 2 0 1 −50.0 旁底桁型材/mm×mm 160×11.5 140×10.0 −23.9 140×10.5 −20.1 外底板厚/mm 16.0 15.5 −3.1 13.5 −15.6 外底型材/mm 300×11 270×10 −18.2 270×10 −18.2 表 4 舭部区域设计变量及优化结果
Table 4. Design variables and optimization results for bilge area
设计变量 优化前 规范优化后 变化率/% 有限元优化后 变化率/% 舭部外板厚/mm 15 11 −26.7 12 −20.0 垂直交叉板厚/mm 8.0 7.5 −6.3 6.5 −18.8 型材数量/个 4 3 −25.0 2 −50.0 竖直板型材/mm 280×11.5 270×10.0 −16.1 260×10.5 −15.2 水平板型材/mm 270×11.0 300×11.0 +11.1 240×9.5 −23.2 表 5 上部舷侧区域设计变量及优化结果
Table 5. Design variables and optimization results for upper side area
设计变量 优化前 规范优化后 变化率/% 有限元优化后 变化率/% 各甲板型材数量/个 2 1 −50.0 1 −50.0 主甲板板厚/mm 20 19 −5.0 19 −5.0 甲板型材/mm 400×11.0 365×11.0 −8.8 380×9.5 −18.0 舷侧外板板厚/mm 16 15 −6.3 13 −18.8 舷侧内板板厚/mm 12.0 12.0 0 11.5 −4.2 舷侧型材数量/个 4 3 −25.0 4 0 舷侧型材/mm 260×13.0 280×10.5 −13.0 240×11.5 −18.3 表 6 舯部舷侧区域设计变量及优化结果
Table 6. Design variables and optimization results for midship side area
设计变量 优化前 规范优化后 变化率/% 有限元优化后 变化率/% 二级甲板板厚/mm 10.0 11.5 +15.0 8.5 −15.0 甲板型材/mm 200×11.0 200×11.0 0 200×9.5 −13.6 舷侧外板板厚/mm 14.0 12.0 −14.3 11.5 −17.9 舷侧内板板厚/mm 11.5 11.5 0 8.5 −26.1 舷侧型材数量/个 5 4 −20.0 4 −20.0 舷侧型材/mm 230×13.0 230×10.5 −19.2 230×11.5 −11.5 表 7 下部舷侧区域设计变量及优化结果
Table 7. Design variables and optimization results for lower side area
设计变量 优化前 规范优化后 变化率/% 有限元优化后 变化率/% 三级甲板板厚/mm 8 10.5 +31.3 9.0 +12.5 甲板型材/mm 270×11.0 300×11.0 +11.1 240×9.5 −23.2 舷侧外板板厚/mm 13.0 11.5 −11.5 12.0 −7.7 舷侧内板板厚/mm 11.5 11.0 −4.3 9.0 −21.7 舷侧型材数量/个 5 5 0 3 −40.0 舷侧型材/mm 220×13.0 230×10.5 −15.6 250×11.5 +0.5 -
[1] 许埔宁, 张崎, 白泽坤. 基于规范计算的油船中剖面优化设计[J]. 造船技术, 2020(6): 16–22.XU P N, ZHANG Q, BAI Z K. Oil tanker midship section optimization design based on calculation in rules[J]. Marine Technology, 2020(6): 16–22 (in Chinese). [2] 朱稣骥, 顾学康, 胡嘉骏. 遗传算法的改进及其在超大型油船结构优化中的应用[J]. 船舶力学, 2007, 11(2): 237–249. doi: 10.3969/j.issn.1007-7294.2007.02.011ZHU S J, GU X K, HU J J. Modification of genetic algorithm and its application in ship structural optimal de-sign of a VLCC[J]. Journal of Ship Mechanics, 2007, 11(2): 237–249 (in Chinese). doi: 10.3969/j.issn.1007-7294.2007.02.011 [3] 李仲伟, 吴有生, 崔维成. 基于有限元法的小水线面双体船结构优化[J]. 船舶力学, 2005, 9(2): 99–108. doi: 10.3969/j.issn.1007-7294.2005.02.015LI Z W, WU Y S, CUI W C. Finite element method based structural optimization for SWATH[J]. Journal of Ship Mechanics, 2005, 9(2): 99–108 (in Chinese). doi: 10.3969/j.issn.1007-7294.2005.02.015 [4] 何小二, 王德禹, 夏利娟. 基于粒子群算法的多用途船结构优化[J]. 上海交通大学学报, 2013, 47(6): 928–931.HE X E, WANG D Y, XIA L J. Optimization of multi-purpose ship structures based on particle swarm approach[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 928–931 (in Chinese). [5] 邵雄飞, 俞铭华, 郭小东. 基于直接计算法的超大型油船整体舱段结构优化[J]. 中国造船, 2008, 49(2): 41–51. doi: 10.3969/j.issn.1000-4882.2008.02.006SHAO X F, YU M H, GUO X D. Structure optimization for very large oil cargo tanks based on FEM[J]. Shipbuild-ing of China, 2008, 49(2): 41–51 (in Chinese). doi: 10.3969/j.issn.1000-4882.2008.02.006 [6] 何勇, 夏利娟. 一种基于MATLAB和Nastran的船体结构优化程序研究[J]. 船舶工程, 2011, 33(增刊 2): 132–134, 167.HE Y, XIA L J. Study on a ship structural optimization program based on MATLAB and Nastran[J]. Ship Engineering, 2011, 33(Supp 2): 132–134, 167 (in Chinese). [7] 宋宏伟, 刘浩. 基于MATLAB与ANSYS的结构优化设计[J]. 大连民族学院学报, 2011, 13(3): 284–287.SONG H W, LIU H. Optimum structural design based on MATLAB and ANSYS[J]. Journal of Dalian Nationalities University, 2011, 13(3): 284–287 (in Chinese). [8] KARABOGA D, AKAY B. A comparative study of artifici-al bee colony algorithm[J]. Applied Mathematics and Com-putation, 2009, 214(1): 108–132. doi: 10.1016/j.amc.2009.03.090 [9] 王文全, 黄胜, 侯远航, 等. 基于改进人工蜂群算法的大型舰船主尺度优化[J]. 武汉理工大学学报, 2012, 34(6): 58–62,90. doi: 10.3963/j.issn.1671-4431.2012.06.012WANG W Q, HUANG S, HOU Y H, et al. Optimal principal parameters for large naval ship based on modifi- ed artificial bee colony algorithm[J]. Journal of Wuhan University of Technology, 2012, 34(6): 58–62,90 (in Chinese). doi: 10.3963/j.issn.1671-4431.2012.06.012 [10] HUANG F X, WANG L J, YANG C. A new improved artificial bee colony algorithm for ship hull form optimiza-tion[J]. Engineering Optimization, 2016, 48(4): 672–686. doi: 10.1080/0305215X.2015.1031660 [11] LI K, YUAN Z J, JIANG X G. A novel damaged ship righting plan optimization method based on artificial bee colony algorithm[J]. Journal of Marine Science and Tech-nology, 2018, 26(5): 667–677. [12] 刘浪, 夏利娟. 基于人工蜂群算法的油船舯剖面优化设计[J]. 船舶工程, 2019, 41(5): 6–9,59.LIU L, XIA L J. Optimization design of oil tanker mid-ship section based on artificial bee colony algorithm[J]. Ship Engineering, 2019, 41(5): 6–9,59 (in Chinese). [13] KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Com-puting, 2008, 8(1): 687–697. doi: 10.1016/j.asoc.2007.05.007 [14] 陈阿慧, 李艳娟, 郭继峰. 人工蜂群算法综述[J]. 智能计算机与应用, 2014, 4(6): 20–24. doi: 10.3969/j.issn.2095-2163.2014.06.007CHEN A H, LI Y J, GUO J F. A comprehensive survey on artificial bee colony algorithm[J]. Intelligent Computer and Applications, 2014, 4(6): 20–24 (in Chinese). doi: 10.3969/j.issn.2095-2163.2014.06.007 [15] 中国船级社.钢制海船入级规范[S].北京: 人民交通出版社, 2012.China Classification Society. Rules for classification of sea-going steel ships[S].Beijing: China Communication Press, 2012 (in Chinese). [16] 朱胜昌, 陈庆强, 江南. 大型集装箱船总纵强度计算方法研究[J]. 船舶力学, 2001, 5(2): 34–42. doi: 10.3969/j.issn.1007-7294.2001.02.005ZHU S C, CHEN Q Q, JIANG N. Research on the cal-culating method of longitudinal strength of large container ship[J]. Journal of Ship Mechanics, 2001, 5(2): 34–42 (in Chinese). doi: 10.3969/j.issn.1007-7294.2001.02.005 -