留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声激励下圆柱壳敷设多孔吸声材料声辐射特性及计算方法

杨欣眉 陈美霞 赵应龙 董文凯

杨欣眉, 陈美霞, 赵应龙, 等. 声激励下圆柱壳敷设多孔吸声材料声辐射特性及计算方法[J]. 中国舰船研究, 2023, 18(2): 97–106 doi: 10.19693/j.issn.1673-3185.02518
引用本文: 杨欣眉, 陈美霞, 赵应龙, 等. 声激励下圆柱壳敷设多孔吸声材料声辐射特性及计算方法[J]. 中国舰船研究, 2023, 18(2): 97–106 doi: 10.19693/j.issn.1673-3185.02518
YANG X M, CHEN M X, ZHAO Y L, et al. Characteristics and calculation method of sound radiation of cylindrical shell with porous sound-absorbing material under acoustic excitation[J]. Chinese Journal of Ship Research, 2023, 18(2): 97–106 doi: 10.19693/j.issn.1673-3185.02518
Citation: YANG X M, CHEN M X, ZHAO Y L, et al. Characteristics and calculation method of sound radiation of cylindrical shell with porous sound-absorbing material under acoustic excitation[J]. Chinese Journal of Ship Research, 2023, 18(2): 97–106 doi: 10.19693/j.issn.1673-3185.02518

声激励下圆柱壳敷设多孔吸声材料声辐射特性及计算方法

doi: 10.19693/j.issn.1673-3185.02518
基金项目: 国家自然科学基金资助项目(52071152,51779098),基础加强计划重点基础研究资助项目(2020-JCJQ-ZD-222)
详细信息
    作者简介:

    杨欣眉,女,1997年生,硕士生。研究方向:结构振动与噪声控制。E-mail:974208481@qq.com

    陈美霞,女,1975年生,博士,教授。研究方向:结构振动与噪声控制。E-mail:chenmx26@163.com

    赵应龙,男,1976年生,博士,研究员。研究方向:舰船设备减振降噪及抗冲击技术。E-mail:zhaoyl_hg@163.com

    通信作者:

    赵应龙

  • 中图分类号: U661.44;U668.5

Characteristics and calculation method of sound radiation of cylindrical shell with porous sound-absorbing material under acoustic excitation

知识共享许可协议
声激励下圆柱壳敷设多孔吸声材料声辐射特性及计算方法杨欣眉,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在研究声激励下内壁上敷设有多孔纤维吸声材料的环肋单层圆柱壳振动声辐射特性和计算方法。  方法  在Johnson–Champoux–Allard (JCA)等效流体理论模型和多层介质传递矩阵的基础上,推导多层吸声结构吸声系数的理论公式,验证对比用于计算声激励下敷设多孔吸声材料的环肋单层圆柱壳振动声辐射的3种方法(即多孔介质声学实体建模、有限元模型结合理论公式和设置吸声系数阻抗边界)。最后,研究吸声材料厚度、空气背衬层、材料静态流阻和排布顺序对该单层圆柱壳结构吸声效果的影响。  结果  敷设多孔吸声材料可降低圆柱壳结构振动声辐射。基于敷设了多孔吸声材料圆柱壳的吸声系数曲线的分析结果,可以快速有效地预测圆柱壳振动声辐射结果趋势。  结论  通过合理设计吸声材料属性和排布顺序可以有效提高吸声结构吸声性能,从而达到减振降噪的目的。
  • 图  多层介质传递矩阵示意图

    Figure  1.  Schematic diagram of multi-layer dielectric transfer matrix

    图  圆柱壳几何模型(上)和有限元模型(下)

    Figure  2.  Geometric model (upper) and finite element model (lower) of cylindrical shell

    图  本文和文献[18]方法计算的声激励下圆柱壳均方振速(上)和辐射声功率(下)

    Figure  3.  Mean quadratic vibration velocity (upper) and sound radiation power (lower) vs. frequency plots showing results of a cylindrical shell under acoustic excitation obtained by the method in this paper and Ref. [18]

    图  COMSOL软件建模

    Figure  4.  COMSOL software modeling

    图  有无敷设多孔吸声材料的圆柱壳有限元模型

    Figure  5.  Finite element model of cylindrical shell with and without porous sound-absorbing material

    图  不同方法计算的声激励下含多孔吸声材料圆柱壳均方振速(上)和辐射声功率(下)(d=15 mm)

    Figure  6.  Mean quadratic vibration velocity (upper) and sound radiation power (lower) vs. frequency plots showing results of a cylindrical shell with porous sound-absorbing material under acoustic excitation obtained by different methods (d = 15 mm)

    图  不同厚度多孔吸声材料的圆柱壳声激励下计算的吸声系数曲线

    Figure  7.  Sound absorption coefficient vs. frequency plots showing results of a cylindrical shell with porous sound-absorbing material of different thicknesses under acoustic excitation

    图  多孔吸声材料、空气和水的波数图

    Figure  8.  Wave number vs. frequency plots for porous sound-absorbing material, air and water

    图  不同厚度多孔吸声材料的圆柱壳声激励下计算的均方振速(上)和辐射声功率(下)

    Figure  9.  Mean quadratic vibration velocity (upper) and sound radiation power (lower) vs. frequency plots showing results of a cylindrical shell with porous sound-absorbing material of different thicknesses under acoustic excitation

    图  10  三层吸声结构介质层示意图

    Figure  10.  Schematic diagram of dielectric layer for three-layer sound absorption structure

    图  11  不同吸声结构(无吸声材料、单层和三层)声激励下计算的圆柱壳均方振速(上)和辐射声功率(下)

    Figure  11.  Mean quadratic vibration velocity (upper) and sound radiation power (lower) vs. frequency plots showing results of a cylindrical shell without or with a single-and three-layer sound-absorbing material under acoustic excitation

    图  12  不同敷设方案声激励下计算的三层吸声结构圆柱壳吸声系数

    Figure  12.  Sound absorption coefficient vs. frequency plots showing results of a cylindrical shell with three-layer sound absorption structure of different schemes under acoustic excitation

    图  13  不同敷设方案声激励下计算的三层吸声结构圆柱壳圴方振速(上)和辐射声功率(下)

    Figure  13.  Mean quadratic vibration velocity (upper) and sound radiation power (lower) vs. frequency plots showing results of a cylindrical shell with three-layer sound absorption structure of different schemes under acoustic excitation

    表  敷设多孔吸声材料圆柱壳的振动声辐射性能计算方法

    Table  1.  Calculation methods for vibration and sound radiation of cylindrical shell with porous sound-absorbing material

    方法描述
    方法1 有限元方法,通过COMSOL软件中的多孔介质声学模块,实体构建出多孔吸声材料层,设置计算模型的材料孔隙率、流阻率、粘滞特征长度、热特征长度和曲折因子等各项参数
    方法2 在有限元模型的基础上加入1.1节所述等效流体理论的各项公式,通过公式变量的形式得到吸声材料层的动态密度和动态声速
    方法3 结合1.2节所述多层介质传递矩阵和1.1节所述等效流体理论方法,得到吸声材料层的吸声系数曲线,在COMSOL软件中构建吸声系数函数,使其作为阻抗边界附加在圆柱壳内壁上
    下载: 导出CSV

    表  多孔吸声材料及内部流场参数

    Table  2.  Parameters for porous sound-absorbing material and internal flow field

    参数数值
    空气密度${\rho_0}/({\text{kg} } \cdot { {\text{m} }^{ - 3}) }$1.21
    空气声速${c_0}/({\text{m} } \cdot { {\text{s} }^{ - 1}) }$343
    多孔吸声材料静态流阻${R_{\rm{f} } }/{(\rm{N} }\cdot{\text{s} } \cdot { {\text{m} }^{ - 4}) }$24 000
    多孔吸声材料普朗特数${N_{{\rm{pr}}} }$0.702
    多孔吸声材料孔隙率$\sigma $0.95
    空气的比热容率${\gamma _{\rm{s}}}$1.4
    大气压${P_0}/{{\rm{Pa}}}$101 320
    下载: 导出CSV

    表  两种多孔吸声材料及内部流场参数

    Table  3.  Parameters for two kinds of porous sound-absorbing material and internal flow field

    参数多孔吸声材料1多孔吸声材料2
    多孔吸声材料静态流阻${R}_{ {\rm{f} } }/({\rm{N} }\cdot\text{s}\cdot {\text{m} }^{-4})$24 00042
    多孔吸声材料普朗特数${N_{{\rm{pr}}} }$0.7020.702
    多孔吸声材料孔隙率$\sigma $0.950.95
    空气的比热容率${\gamma _{\rm{s}}}$1.41.4
    大气压${P_0}/{\rm{P}}{ {\text{a} }_{_{^{^{} } } }}$101 320101 320
    下载: 导出CSV

    表  三层吸声结构的圆柱壳计算方案

    Table  4.  Calculation schemes for cylindrical shell with three-layer sound-absorbing material

    方案吸声结构敷设顺序(第3层+第2层+第1层)
    方案110 mm空气背衬层+20 mm吸声材料2
    方案210 mm空气背衬层+10 mm吸声材料1+10 mm吸声材料2
    方案310 mm空气背衬层+10 mm吸声材料2+10 mm吸声材料1
    方案410 mm空气背衬层+20 mm吸声材料1
    下载: 导出CSV
  • [1] 陈明, 孙新占, 刘远国, 等. 舰艇空气噪声引起水下噪声的估算方法及试验验证[J]. 船舶力学, 2008, 12(4): 663–668. doi: 10.3969/j.issn.1007-7294.2008.04.021

    CHEN M, SUN X Z, LIU Y G, et al. Estimation and experimental validation of the underwater noise induced by the airborne transmission[J]. Journal of Ship Mechanics, 2008, 12(4): 663–668 (in Chinese). doi: 10.3969/j.issn.1007-7294.2008.04.021
    [2] 武国启, 林劲. 船舶舱室空气噪声激励引起水下辐射噪声传递特性试验研究[J]. 振动与冲击, 2020, 39(21): 42–46,78. doi: 10.13465/j.cnki.jvs.2020.21.006

    WU G Q, LIN J. Tests for underwater radiated noise transmission characteristics caused by ship cabin air noise excitation[J]. Journal of Vibration and Shock, 2020, 39(21): 42–46,78 (in Chinese). doi: 10.13465/j.cnki.jvs.2020.21.006
    [3] 陈定中. 舷侧阵声纳安装平台隔振系统振动控制技术研究[D]. 杭州: 浙江大学, 2005.

    CHEN D Z. Study on vibration control techniques for platform mounted sonar in flank array[D]. Hangzhou: Zhejiang University, 2005 (in Chinese).
    [4] 赵毅. 多孔材料吸声性能仿真分析与优化[D]. 重庆: 重庆大学, 2018.

    ZHAO Y. Simulation analysis and optimization of sound absorption properties of porous materials[D]. Chongqing: Chongqing University, 2018 (in Chinese).
    [5] 武国启, 闫辉, 夏宇宏, 等. 金属橡胶材料单层结构吸声特性研究[J]. 稀有金属材料与工程, 2010, 39(11): 1923–1927.

    WU G Q, YAN H, XIA Y H, et al. Study on the sound absorption performance of single layer structure metal rubber material[J]. Rare Metal Materials and Engineering, 2010, 39(11): 1923–1927 (in Chinese).
    [6] 荣吉利, 谌相宇, 李彬, 等. 圆柱形声腔内衬三聚氰胺泡沫降噪方法[J]. 宇航学报, 2016, 37(10): 1271–1278. doi: 10.3873/j.issn.1000-1328.2016.10.016

    RONG J L, CHEN X Y, LI B, et al. A method for noise attenuation in cylindrical cavity with melamine foam lining[J]. Journal of Astronautics, 2016, 37(10): 1271–1278 (in Chinese). doi: 10.3873/j.issn.1000-1328.2016.10.016
    [7] 韩峰, 何立燕, 李晨曦. 多孔纤维材料对飞机壁板结构隔声性能的影响分析[J]. 噪声与振动控制, 2020, 40(4): 167–172. doi: 10.3969/j.issn.1006-1355.2020.04.030

    HAN F, HE L Y, LI C X. Effects of porous materials on the sound insulation performance of aircraft sidewalls[J]. Noise and Vibration Control, 2020, 40(4): 167–172 (in Chinese). doi: 10.3969/j.issn.1006-1355.2020.04.030
    [8] 朱锡, 石勇, 梅志远. 夹芯复合材料在潜艇声隐身结构中的应用及其相关技术研究[J]. 中国舰船研究, 2007, 2(3): 34–39. doi: 10.3969/j.issn.1673-3185.2007.03.008

    ZHU X, SHI Y, MEI Z Y. Laminated compound material and technologies in the development of acoustic stealth structure in submarine[J]. Chinese Journal of Ship Research, 2007, 2(3): 34–39 (in Chinese). doi: 10.3969/j.issn.1673-3185.2007.03.008
    [9] 程修妍, 荣吉利, 谌相宇, 等. 多孔材料在整流罩内中高频降噪的应用与优化研究[J]. 宇航学报, 2018, 39(4): 383–391. doi: 10.3873/j.issn.1000-1328.2018.04.004

    CHENG X Y, RONG J L, CHEN X Y, et al. Analysis and optimization for medium and high frequency noise attenuation of rocket fairings with porous material[J]. Journal of Astronautics, 2018, 39(4): 383–391 (in Chinese). doi: 10.3873/j.issn.1000-1328.2018.04.004
    [10] 刘新金, 刘建立, 徐伯俊, 等. 分层多孔材料吸声结构的性能分析[J]. 振动与冲击, 2012, 31(5): 106–110,117. doi: 10.3969/j.issn.1000-3835.2012.05.021

    LIU X J, LIU J L, XU B J, et al. Acoustic analysis for a sound-absorbing structure with multi-layered porous material[J]. Journal of Vibration and Shock, 2012, 31(5): 106–110,117 (in Chinese). doi: 10.3969/j.issn.1000-3835.2012.05.021
    [11] LI Y J, WANG X F, WANG X F, et al. Sound absorption characteristics of aluminum foam with spherical cells[J]. Journal of Applied Physics, 2011, 110(11): 113525. doi: 10.1063/1.3665216
    [12] WANG C N, KUO Y M, CHEN S K. Effects of compression on the sound absorption of porous materials with an elastic frame[J]. Applied Acoustics, 2008, 69(1): 31–39. doi: 10.1016/j.apacoust.2006.08.006
    [13] 陈鑫, 马文婷, 郝耀东, 等. 梯度弹性多孔材料吸声性能分析与优化设计[J]. 振动与冲击, 2021, 40(9): 270–277. doi: 10.13465/j.cnki.jvs.2021.09.035

    CHEN X, MA W T, HAO Y D, et al. Analysis and optimization design for sound absorption performance of gradient elastic porous materials[J]. Journal of Vibration and Shock, 2021, 40(9): 270–277 (in Chinese). doi: 10.13465/j.cnki.jvs.2021.09.035
    [14] TROCHIDIS A, KALAROUTIS A. Sound transmission through double partitions with cavity absorption[J]. Journal of Sound and Vibration, 1986, 107(2): 321–327. doi: 10.1016/0022-460X(86)90241-5
    [15] ALBA J, RAMIS J, SÁNCHEZ-MORCILLO V J. Improvement of the prediction of transmission loss of double partitions with cavity absorption by minimization techniques[J]. Journal of Sound and Vibration, 2004, 273(4/5): 793–804. doi: 10.1016/S0022-460X(03)00783-1
    [16] LU T J, XIN F X. Vibro-acoustics of lightweight sandwich structures[M]. Beijing: Science Press, 2014.
    [17] 朱蓓丽, 黄修长. 潜艇隐身关键技术[M]. 上海: 上海交通大学出版社, 2012.

    ZHU B L, HUANG X C. The key technology of submarine stealth[M]. Shanghai: Shanghai Jiao Tong University Press, 2012 (in Chinese).
    [18] 金宝燕. 空气噪声激励加筋双层圆柱壳的水下声辐射特性研究[D]. 武汉: 华中科技大学, 2008.

    JIN B Y. The research on underwater acoustic radiation characteristics of stiffened cylindrical shell by airborne sound[D]. Wuhan: Huazhong University of Science and Technology, 2008 (in Chinese).
  • ZG2518_en.pdf
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1548
  • HTML全文浏览量:  168
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-12-22
  • 网络出版日期:  2023-03-26
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回