Impact response of composite lattice sandwich plate structure subjected to underwater explosion
-
摘要:
目的 为提升舰船的水下抗爆能力,针对水下爆炸冲击波作用下新型防护结构碳纤维增强复合材料(CFRP)−点阵铝夹芯板的抗冲击能量吸收性能展开研究。 方法 首先,利用有限元软件ABAQUS建立非药式非接触水下爆炸载荷下CFRP−点阵铝夹芯板的数值仿真模型,并验证其可靠性;然后,通过控制单一变量来分析CFRP−点阵铝夹芯板上、下面板每层纤维厚度和点阵夹芯结构杆件直径对其能量吸收性能与结构挠度的影响;最后,基于上述3种设计参数,采用实验设计方法和数值模拟方法建立代理优化模型,用于对CFRP−点阵铝夹芯板结构的能量吸收性能进行优化设计。 结果 结果显示:在CFRP−点阵铝夹芯板质量恒定的情况下,其优化结果可使比吸收能提高284%;在充分考虑下面板变形的情况下,优化结果的比吸收能可提高59%。 结论 研究表明,该CFRP−点阵铝夹芯板优化结构可有效提升其能量吸收性能,而响应面法是一种可有效提高结构能量吸收性能的优化方法。 Abstract:Objective In order to improve the anti-shock perfomance of ships subjected to underwater explosion, this paper studies the energy absorption and impact resistance of the new protective structure consisted of carbon fiber reinforced plastic (CFRP)-lattice aluminum sandwich plates. Methods First, finite element software ABAQUS is used to establish the numerical simulation model of CFRP-lattice aluminum sandwich plates under non-explosive and non-contact underwater explosion load, and its reliability is verified. Single variables are then controlled to analyze the influence of the fiber layer thickness of the upper and lower panels and the rod diameter of the sandwich lattice structure on the energy absorption characteristics and structural deflection of the CFRP-lattice aluminum sandwich plates. Finally, based on the above three design parameters, a surrogate optimization model is established using the experimental design method and numerical simulation methodology to optimize the energy absorption of the CFRP-lattice aluminum sandwich plate structure. Results The results show that when the mass of the CFRP-lattice aluminum sandwich plates is constant, the specific absorption of the optimized results can be increased by 284%. In full consideration of the deformation of the lower plates, the specific energy absorption of the optimized results can be increased by 59%. Conclusions This study shows that the proposed optimized structure of CFRP-lattice aluminum sandwich plates can effectively improve their energy absorption capacity, and the response surface method is an optimization method that can effectively improve the energy absorption characteristics of the structure. -
Key words:
- underwater explosion /
- lattice structure /
- optimization design /
- numerical simulation
-
表 1 CFRP板部分材料参数(单层)
Table 1. Partial material parameters of CFRP (lamina)
参数 数值 密度/(g·cm−3) 1.56 杨氏模量/MPa 42 700 剪切模量/MPa 4 400 泊松比 0.05 抗拉强度/MPa 658 抗压强度/MPa 269 剪切损伤初始剪应力/MPa 37 表 2 铝合金部分材料参数
Table 2. Partial material parameters of aluminum alloy
参数 数值 密度/(g·cm−3) 2.7 杨氏模量/MPa 69 000 泊松比 0.33 断裂应变 0.125 表 3 水的材料参数
Table 3. Material parameters of water
参数 数值 密度/(g·cm−3) 1 ${c_0}$/(m·s−1) 1 480 $s$ 0 ${\varGamma _0}$ 0 比热/(J·kg−1∙℃−1) 4.2×103 动力黏度/(Pa∙s) 1×10−3 表 4 CFRP−点阵铝夹芯板模型尺寸参数
Table 4. Model parameters of CFRP−lattice aluminum sandwich plate
参数 数值 上面板每层纤维厚${t_1}$/mm 0.250 Octet点阵杆件直径${t_2}$/mm 1.000 下面板每层纤维厚${t_3}$/mm 0.250 能量/J 107.211 质量/kg 8.892 比吸收能SEA/(J·kg−1) 12.057 下面板最大位移Deflection/mm 5.499 表 5 不同工况下的仿真结果
Table 5. Simulation results at different working conditions
工况编号 上面板每层纤维厚${t_1}$/mm Octet杆件直径${t_2}$/mm 下面板每层纤维厚${t_3}$/mm 能量/J 质量/kg 比吸收能
SEA/(J·kg−1)下面板最大位移
Deflection/mmA 0.25 1.0 0.25 107.211 8.892 12.057 5.499 B 0.10 1.0 0.25 33.467 8.725 3.836 5.796 C 0.40 1.0 0.25 41.025 9.059 4.529 5.516 D 0.25 0.8 0.25 82.567 8.873 9.306 5.032 E 0.25 1.2 0.25 120.051 8.916 13.464 5.699 F 0.25 1.0 0.10 105.024 8.725 12.036 7.232 G 0.25 1.0 0.40 103.309 9.059 11.404 4.801 表 6 实验设计代理优化模型及其仿真结果
Table 6. Experimental design surrogate optimization model and its simulation results
工况编号 上面板每层
纤维厚${t_1}$/mmOctet杆件
直径${t_2}$/mm下面板每层
纤维厚${t_3}$/mm能量/J 质量/kg 比吸能
SEA/(J·kg−1)下面板最大位移
Deflection/mm1 0.250 1.000 0.250 107.211 8.892 12.057 5.499 2 0.366 1.312 0.386 210.062 9.212 22.803 5.352 3 0.106 0.873 0.313 74.100 8.789 8.431 5.391 4 0.141 1.441 0.150 216.952 8.719 24.883 7.522 5 0.144 0.782 0.103 51.873 8.590 6.039 6.443 6 0.289 0.981 0.367 108.320 9.064 11.951 4.872 7 0.348 0.526 0.189 37.265 8.894 4.190 4.679 8 0.398 1.393 0.220 291.282 9.075 32.097 6.580 9 0.304 1.096 0.122 168.305 8.821 19.080 7.027 10 0.325 1.058 0.280 165.571 9.016 18.365 5.361 11 0.185 1.560 0.263 386.789 8.913 43.397 6.406 12 0.239 0.484 0.350 26.754 8.949 2.989 4.351 13 0.267 0.640 0.178 44.872 8.799 5.100 5.189 14 0.192 1.233 0.233 221.490 8.837 25.063 6.165 15 0.215 0.726 0.334 30.697 8.921 3.441 4.794 表 7 能量吸收优化设计及模拟结果
Table 7. Optimization design and simulation results of energy absorption
参数 优化结果 模拟结果 能量/J − 411.272 质量/kg − 8.885 比吸收能SEA/(J·kg−1) 45.300 46.287 下面板最大位移Deflection/mm 8.757 8.327 表 8 能量吸收与变形优化设计及模拟结果
Table 8. Optimization design and simulation results of energy absorption and deformation
参数 优化结果 模拟结果 能量/J − 170.233 质量/kg − 8.889 比吸收能SEA/(J·kg−1) 18.367 19.151 下面板位移Deflection/mm 5.499 5.467 -
[1] 张阿漫, 王诗平, 汪玉, 等. 水下爆炸对舰船结构损伤特征研究综述[J]. 中国舰船研究, 2011, 6(3): 1–7. doi: 10.3969/j.issn.1673-3185.2011.03.001ZHANG A M, WANG S P, WANG Y, et al. Advances in the research of characteristics of warship structural damage due to underwater explosion[J]. Chinese Journal of Ship Research, 2011, 6(3): 1–7 (in Chinese). doi: 10.3969/j.issn.1673-3185.2011.03.001 [2] 辛春亮, 秦健, 徐更光, 等. 数值模拟软件在水下爆炸模拟中的应用研究[C]//第四届全国爆炸力学实验技术学术会议. 武夷山: 中国力学学会, 2006.XIN C L, QIN J, XU G G, et al. Application of numerical simulation software in underwater explosion simulation[C]//The 4th National Conference on Experimental Technology of Explosion Mechanics. Mount Wuyi: Chinese Society of Mechanics, 2006 (in Chinese). [3] 焦安龙, 贾则, 陈高杰. 基于ABAQUS的近距水下爆炸对舰艇的冲击响应研究[J]. 电子设计工程, 2015, 23(10): 179–181, 185. doi: 10.3969/j.issn.1674-6236.2015.10.053JIAO A L, JIA Z, CHEN G J. The research of shock response on warship subjected to a close underwater explosion based on ABAQUS[J]. Electronic Design Engineering, 2015, 23(10): 179–181, 185 (in Chinese). doi: 10.3969/j.issn.1674-6236.2015.10.053 [4] 库尔 P. 水下爆炸[M]. 罗耀杰, 韩润泽, 官信, 等译. 北京: 国防工业出版社, 1960.COLE P. Underwater explosion[M]. LUO Y J, HAN R Z, GUAN X, et al, trans. Beijing: National Defense Industry Press, 1960 (in Chinese). [5] GEERS T L. Doubly asymptotic approximations for transient motions of submerged structures[J]. Journal of the Acoustical Society of America, 1978, 64(5): 1500–1508. doi: 10.1121/1.382093 [6] 李国华, 李玉节, 张效慈, 等. 浮动冲击平台水下爆炸冲击谱测量与分析[J]. 船舶力学, 2000, 4(2): 51–60.LI G H, LI Y J, ZHANG X C, et al. Shock spectrum measurement and analysis of underwater explosion on a floating shock platform[J]. Journal of Ship Mechanics, 2000, 4(2): 51–60 (in Chinese). [7] BERNAL OSTOS J, RINALDI R G, HAMMETTER C M, et al. Deformation stabilization of lattice structures via foam addition[J]. Acta Materialia, 2012, 60(19): 6476–6485. doi: 10.1016/j.actamat.2012.07.053 [8] 姚熊亮, 侯健, 王玉红, 等. 水下爆炸冲击载荷作用时船舶冲击环境仿真[J]. 中国造船, 2003, 44(1): 71–74. doi: 10.3969/j.issn.1000-4882.2003.01.011YAO X L, HOU J, WANG Y H, et al. Research on simulation of underwater shock environment of ship[J]. Shipbuilding of China, 2003, 44(1): 71–74 (in Chinese). doi: 10.3969/j.issn.1000-4882.2003.01.011 [9] YU J, LIU G Z, WANG J, et al. An effective method for modeling the load of bubble jet in underwater explosion near the wall[J]. Ocean Engineering, 2021, 220: 108408. doi: 10.1016/j.oceaneng.2020.108408 [10] JIANG X W, ZHANG W, LI D C, et al. Experimental analysis on dynamic response of pre-cracked aluminum plate subjected to underwater explosion shock loadings[J]. Thin-Walled Structures, 2021, 159: 107256. doi: 10.1016/j.tws.2020.107256 [11] WANG X H, ZHANG S R, WANG C, et al. Blast-induced damage and evaluation method of concrete gravity dam subjected to near-field underwater explosion[J]. Engineering Structures, 2020, 209: 109996. doi: 10.1016/j.engstruct.2019.109996 [12] 姚熊亮, 王玉红, 史冬岩, 等. 圆筒结构水下爆炸数值实验研究[J]. 哈尔滨工程大学学报, 2002, 23(1): 5–8,36. doi: 10.3969/j.issn.1006-7043.2002.01.002YAO X L, WANG Y H, SHI D Y, et al. Numerical experiment on underwater explosion of cylinder[J]. Journal of Harbin Engineering University, 2002, 23(1): 5–8,36 (in Chinese). doi: 10.3969/j.issn.1006-7043.2002.01.002 [13] HUANG C, LIU M B, WANG B, et al. Underwater explosion of slender explosives: directional effects of shock waves and structure responses[J]. International Journal of Impact Engineering, 2019, 130: 266–280. doi: 10.1016/j.ijimpeng.2019.04.018 [14] 韩阳. 爆炸载荷及其作用下的舰船结构响应数值模拟[D]. 武汉: 华中科技大学, 2019.HAN Y. A numerical simulation of explosion loads and bull response[D]. Wuhan: Huazhong University of Science & Technology, 2019 (in Chinese). [15] HUANG Z X, ZHANG X, YANG C Y. Experimental and numerical studies on the bending collapse of multi-cell aluminum/CFRP hybrid tubes[J]. Composites Part B: Engineering, 2020, 181: 107527. doi: 10.1016/j.compositesb.2019.107527 [16] 艾冬杰. 水下接触及非接触近场爆炸载荷下泡沫铝夹芯板结构失效机理与吸能特性研究[D]. 武汉: 华中科技大学, 2017.AI D J. Research on failure mechanism and energy absorption characteristics of sandwich panels with aluminum foam core under contact and non-contact near-field water blast loading[D]. Wuhan: Huazhong University of Science & Technology, 2017 (in Chinese). [17] ELSAYYED M S A, DAMIANO P. Multiscale model of the effective properties of the octet-truss lattice material[C]//USA: Aiaa/issmo Multidisciplinary Analysis and Optimization Conference, 2008: 847-850. [18] USHIJIMA K, CANTWELL W J, MINES R A W, et al. An investigation into the compressive properties of stainless steel micro-lattice structures[J]. Journal of Sandwich Structures & Materials, 2011, 13(3): 303–329. [19] DENARDO N, PINTO M, SHUKLA A. Hydrostatic and shock-initiated instabilities in double-hull composite cylinders[J]. Journal of the Mechanics and Physics of Solids, 2018, 120: 96–116. doi: 10.1016/j.jmps.2017.10.020 [20] ZHANG X, ZHANG H, WANG Z. Bending collapse of square tubes with variable thickness[J]. International Journal of Mechanical Sciences, 2016, 106: 107–116. doi: 10.1016/j.ijmecsci.2015.12.006 [21] 张雄. 轻质薄壁结构耐撞性分析与设计优化[D]. 大连: 大连理工大学, 2007.ZHANG X. Crashworthiness analysis and design optimization of light thin-walled structures[D]. Dalian: Dalian University of Technology, 2007 (in Chinese). [22] 张志红, 何桢, 郭伟. 在响应曲面方法中三类中心复合设计的比较研究[J]. 沈阳航空工业学院学报, 2007, 24(1): 87–91.ZHANG Z H, HE Z, GUO W. A comparative study of three central composite designs in response surface methodology[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 24(1): 87–91 (in Chinese). [23] MCKAY M D, BECKMAN R J, CONOVER W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239–245. [24] DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021-1041. [25] 任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究[D]. 武汉: 华中科技大学, 2017.REN P. Research on non-explosive underwater shock loading technique and blast resistant properties of aluminium alloy structures[D]. Wuhan: Huazhong University of Science & Technology, 2017 (in Chinese). [26] LI Y, CHEN Z H, ZHAO T, et al. An experimental study on dynamic response of polyurea coated metal plates under intense underwater impulsive loading[J]. International Journal of Impact Engineering, 2019, 133: 103361. doi: 10.1016/j.ijimpeng.2019.103361 [27] HUANG W, JIA B, ZHANG W, et al. Dynamic failure of clamped metallic circular plates subjected to underwater impulsive loads[J]. International Journal of Impact Engineering, 2016, 94: 96–108. doi: 10.1016/j.ijimpeng.2016.04.006 [28] 朱凌雪, 王同银, 朱晓磊. 基于梯度化因子功能梯度点阵夹层结构优化设计[J]. 振动与冲击, 2018, 37(23): 98–103,110.ZHU L X, WANG T Y, ZHU L X. Optimization design of a functionally graded lattice sandwich structure based on gradient factor[J]. Journal of Vibration and Shock, 2018, 37(23): 98–103,110 (in Chinese). -
ZG2503_en.pdf
-