Simulation study on hydrodynamic performance of podded propulsor for curise ship
-
摘要:
目的 为研究邮轮吊舱推进器组合式水力组件与其敞水性能间的相互映射关系,提出基于雷诺平均纳维−斯托克斯(RANS)方程的吊舱推进器水动力性能预报方法。 方法 以邮轮吊舱推进器缩比模型为研究对象,在深水拖曳水池中开展推进器敞水性能试验,对预报方法进行精度验证。通过仿真计算,分析吊舱推进器舱体形状、螺旋桨盘面比和桨叶数对吊舱推进器水动力性能的影响规律。 结果 结果表明:舱体形状对推进器敞水性能的影响较小;提高螺旋桨盘面比时,推进器的推力系数和敞水效率均先增后减,而转矩系数则在一定范围内随之增加;增加螺旋桨叶数时,推进器的推力系数、转矩系数和敞水效率均先增加后减小,而桨叶数对低进速系数下吊舱推进器敞水效率的影响较小。 结论 研究成果可为吊舱推进器的优化设计提供参考。 -
关键词:
- 邮轮 /
- 吊舱推进器 /
- 水动力性能 /
- 计算流体动力学(CFD) /
- 优化设计
Abstract:Objective Aiming at the mapping relationship between combined hydraulic components and performance, the hydrodynamic performance prediction method of a podded propulsor for cruise ship based on Reynolds-averaged Navier-Stokes (RANS) is studied. Methods Taking a scale model of a podded propulsor as the research object, the open water performance test of the propulsor is carried out in a deepwater towing tank, and the accuracy of the prediction method is verified. The effects of pod geometry, disk ratio and blade number on the hydrodynamic performance of the podded propulsor are simulated and analyzed. Results The results show that the geometry of the pod has little effect on the open water performance of the propulsor. Increasing the disk ratio of the propeller causes the thrust coefficient and open water efficiency to first increase and then decrease, while the torque coefficient only increases within a certain range. Increasing the number of propeller blades will first increase and then decrease the open water performance of the propulsor, and the number of propeller blades has little effect on the open water efficiency of the podded propulsor under low advance coefficient. Conclusion The results of this study can provide reference value for the optimal design of cruise ship podded propulsors. -
表 1 推进器的主要参数
Table 1. Main parameters of podded propulsor
参数 数值 螺旋桨直径D/mm 200 螺旋桨叶片数量Z 5 盘面比 0.67 0.7R处螺距比 1.15 0.75R处弦长/mm 63.2 0.75R处叶厚/mm 3.24 旋向 右旋 吊舱舱体最大外径/mm 89.42 吊舱舱体长度/mm 402.4 表 2 边界条件及计算参数的设置
Table 2. Setting of boundary conditions and calculation parameters
边界条件及计算参数 定义或数值 远场 对称平面 静态域入口 速度进口 静态域出口 压力出口 速度幅值 场函数VA 求解器 分离式求解器 螺旋桨最高转速/( r·min−1) 898 湍流模型 Realizable k-ε湍流模型 流体运动模型 多重参考系模型 压力–速度场耦合 SIMPLE算法 入口速度 场函数VA 湍流动能 一阶迎风格式 湍流耗散率 一阶迎风格式 -
[1] 韩芸, 张峥, 沈兴荣. 吊舱式推进器敞水性能研究[C]//中国造船工程学会. 中国造船工程学会2009年优秀学术论文集. 北京: 中国造船工程学会, 2010: 120−127.HAN Y, ZHANG Z, SHEN X R. Research on open water performance of POD propeller[C]//The Chinese Society of Naval Architects and Marine Engineers. Proceedings of 2009 Academic Conference on Ship Hydrodynamics and the 30th Anniversary of China's Entry into ITTC. Beijing: The Chinese Society of Naval Architects and Marine Engineers, 2010: 120-127 (in Chinese). [2] HANSEN J F, WENDT F. History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends[J]. Proceedings of the IEEE, 2015, 103(12): 2229–2242. doi: 10.1109/JPROC.2015.2458990 [3] ISLAM M F, VEITCE B, LIU P. Experimental research on marine podded propulsors[J]. Journal of Naval Architecture and Marine Engineering, 2007, 4(2): 57–71. [4] 贺伟, 陈克强, 李子如. 串列式吊舱推进器操舵工况水动力试验研究[J]. 华中科技大学学报(自然科学版), 2015, 43(1): 107–111.HE W, CHEN K Q, LI Z R. Experimental research on hydrodynamics of tandem podded propulsor in azimuthing conditions[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(1): 107–111 (in Chinese). [5] ISLAM M, AKINTURK A, VEITCH B. Performance aspects of podded propulsor in dynamic operating conditions[J]. International Shipbuilding Progress, 2016, 62(3/4): 139–160. doi: 10.3233/ISP-150119 [6] ZHAO D G, GUO C Y, WU T C, et al. Hydrodynamic interactions between bracket and propeller of podded propulsor based on particle image velocimetry test[J]. Water, 2019, 11(6): 1142. doi: 10.3390/w11061142 [7] 封培元, 吴永顺, 冯毅, 等. 吊舱推进豪华邮轮在波浪中的功率增加预报试验研究[J]. 中国舰船研究, 2020, 15(5): 11–16.FENG P Y, WU Y S, FENG Y, et al. An experimental prediction method of power increases of a cruise ship with podded propulsion in waves[J]. Chinese Journal of Ship Research, 2020, 15(5): 11–16 (in Chinese). [8] CHENG B H, DEAN J S, MILLER R W, et al. Hydro dynamic evaluation of hull forms with podded propulsors[J]. Naval Engineers Journal, 1989, 101(3): 197–206. doi: 10.1111/j.1559-3584.1989.tb02199.x [9] TASKAR B, STEEN S, ERIKSSON J. Effect of waves on cavitation and pressure pulses of a tanker with twin podded propulsion[J]. Applied Ocean Research, 2017, 65: 206–218. doi: 10.1016/j.apor.2017.04.005 [10] BAL A, GÜNER M. Performance analysis of podded propulsors[J]. Ocean Engineering, 2009, 36(8): 556–563. doi: 10.1016/j.oceaneng.2009.01.016 [11] YE J M, XIONG Y. Prediction of podded propeller cavitation using an unsteady surface panel method[J]. Journal of Hydrodynamics, Ser. B, 2008, 20(6): 790–796. doi: 10.1016/S1001-6058(09)60017-2 [12] SHAMSI R, GHASSEMI H, MOLYNEUX D, et al. Numerical hydrodynamic evaluation of propeller (with hub taper) and podded drive in azimuthing conditions[J]. Ocean Engineering, 2014, 76: 121–135. doi: 10.1016/j.oceaneng.2013.10.009 [13] 祝志超, 熊鹰. 基于CFD预报双桨式吊舱推进器水动力性能[J]. 舰船科学技术, 2016, 38(3): 14–19. doi: 10.3404/j.issn.1672-7619.2016.03.004ZHU Z C, XIONG Y. Research on the CFD prediction method of hydrodynamic performance of tandem type podded propulsor[J]. Ship Science and Technology, 2016, 38(3): 14–19 (in Chinese). doi: 10.3404/j.issn.1672-7619.2016.03.004 [14] ZHANG Y X, WU X P, ZHOU Z Y, et al. A numerical study on the interaction between forward and aft propellers of hybrid CRP pod propulsion systems[J]. Ocean Engineering, 2019, 186: 106084. doi: 10.1016/j.oceaneng.2019.05.066 [15] 姚震球, 徐植融, 凌宏杰, 等. 拖式吊舱推进器的水动力特性分析[J]. 舰船科学技术, 2020, 42(5): 44–49. doi: 10.3404/j.issn.1672-7649.2020.05.009YAO Z Q, XU Z R, LING H J, et al. Analysis of hydrodynamic characteristics of pull podded thruster[J]. Ship Science and Technology, 2020, 42(5): 44–49 (in Chinese). doi: 10.3404/j.issn.1672-7649.2020.05.009 [16] 王贵彪, 谢永和, 许颂捷, 等. 不同湍流模型在螺旋桨水动力性能预报中的分析与比较[J]. 浙江海洋学院学报(自然科学版), 2014, 33(6): 526–530.WANG G B, XIE Y H, XU S J, et al. Analysis and comparison of different turbulence models in the computation of propeller's hydrodynamic performance[J]. Journal of Zhejiang Ocean University (Natural Science), 2014, 33(6): 526–530 (in Chinese). [17] 董小倩. 吊舱推进器水动力性能数值研究[D]. 上海: 上海交通大学, 2013.DONG X Q. Numerical study of the hydrodynamic performance of podded propulsor[D]. Shanghai: Shanghai Jiao Tong University, 2013. -
ZG2491_en.pdf
-