Numerical evaluation method of lightning rod protection probability
-
摘要:
目的 针对传统避雷针防护效能评估方法难以对其防护概率进行高效评估的现状,基于电气几何模型和引雷空间理论发展一种避雷针防护概率数值评估高效算法,实现避雷针对空间任意点防护概率的高效计算。 方法 首先,根据上下行先导的拦截过程确定避雷针与保护物的引雷空间边界;然后,再由雷击距画出受雷曲面与暴露弧,通过分析受雷曲面和暴露弧的不同特征,量化评估避雷针的引雷风险与接闪效能;最后,综合避雷针引雷与防雷两方面特性建立防护概率的数值评估模型。为检验该方法的准确性,分析避雷针防护概率变化的一般规律,并将结果与已有的分析方法进行对比。 结果 结果表明,该方法的评估结果与经典雷电先导发展模型理论的雷击模拟结果相符。 结论 该方法量化程度高,可以实现避雷针对空间任一点防护概率的高效计算,有助于防雷设计工作。 Abstract:Objectives Aiming at the current situation in which it is difficult to efficiently evaluate protection probability through traditional lightning rod evaluation methods, an efficient numerical evaluation algorithm is developed on the basis of an electrogeometric model (EGM) and attractive volume to realize the efficient calculation of lightning protection probability at any point in space. Methods This method first determines the attractive volume boundary of the lightning rod and protection object according to the interception process of the upward and downward leaders. The collection surface and exposure arc of the lightning stroke distance are then calculated, enabling the attractive risk and interception effect of the lightning rod to be quantified. Finally, the attraction and interception characteristics of the lightning rod are integrated to establish a numerical evaluation model of protection probability. To verify the accuracy of this method, the general rule of lightning rod protection probability is analyzed and the results compared with the existing analysis method. Result The evaluation results of this method show good agreement with those of classical leader progression model (LPM) theory. Conclusions The method proposed herein has a high degree of quantification and can realize the efficient calculation of lightning protection probability at any point in space, which can provide useful references for lightning protection design work. -
Key words:
- lightning rod /
- attractive volume /
- protection probability /
- numerical evaluation
-
表 1 避雷针防护概率评估结果与计算效率
Table 1. Evaluation results and calculation efficiency of lightning rod protection probability
避雷针高度/m LPM 本文方法 防护概率P1/% 平均耗时/min 防护概率P2/% 平均耗时/s 15 75 45 49.79 <1 20 80 45 62.69 <1 25 83 45 76.56 <1 30 85 45 85.93 <1 35 91 45 90.64 <1 40 92 45 92.66 <1 -
[1] 电力工业部科学技术司. 交流电气装置的过电压保护和绝缘配合: DL/T 620—1997[S]. 北京: 中国电力出版社, 1997.Ministry of Electric Power Industry of the People's Republic of China. Overvoltage protection and insulation coordination for AC electrical installations: DL/T 620-1997[S]. Beijing: China Electric Power Press, 1997 (in Chinese). [2] 中华人民共和国住房和城乡建设部. 交流电气装置的过电压保护和绝缘配合设计规范: GB/T 50064—2014[S]. 北京: 中国计划出版社, 2014.Ministry of Housing and Urban-rural Development of the People's Republic of China. Code for design of overvoltage protection and insulation coordination for AC electrical installations: GB/T 50064-2014[S]. Beijing: China Planning Press, 2014 (in Chinese). [3] BRUSSO B. The electrogeometrical model of the rolling sphere method[J]. IEEE Industry Applications Magazine, 2016, 22(2): 7–70. doi: 10.1109/MIAS.2015.2503940 [4] GOLDE R H. The frequency of occurrence and the distribution of lightning flashes to transmission lines[J]. Transactions of the American Institute of Electrical Engineers, 1945, 64(12): 902–910. doi: 10.1109/T-AIEE.1945.5059060 [5] Substations Committee of the IEEE Power Engineering Society. IEEE guide for direct lightning stroke shielding of substations: IEEE Std 998-1996[S]. New York: American National Standards Institute, 1996. [6] LEE R H. Lightning protection of buildings[J]. IEEE Transactions on Industry Applications, 1979, IA-15(3): 236–240. doi: 10.1109/TIA.1979.4503648 [7] DELLERA L, GARBAGNATI E. Lightning stroke simulation by means of the leader progression model. I. Description of the model and evaluation of exposure of free-standing structures[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 2009–2022. doi: 10.1109/61.103696 [8] ERIKSSON A J, MOUSA A M. Discussion of "Lightning stroke simulation by means of the leader progression model. II. Exposure and shielding failure evaluation of overhead lines with assessment of application graphs" by L. Dellera and E. Garbagnati (and replies)[J]. IEEE Transactions on Power Delivery, 1991, 6(1): 456–460. doi: 10.1109/61.103771 [9] RIZK F A M. Modeling of transmission line exposure to direct lightning strokes[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1983–1997. doi: 10.1109/61.103694 [10] RIZK F A M. Switching impulse strength of air insulation: leader inception criterion[J]. IEEE Transactions on Power Delivery, 1989, 4(4): 2187–2195. doi: 10.1109/61.35646 [11] ZHANG X W, DONG L, HE J L, et al. Study on the effectiveness of single lightning rods by a fractal approach[J]. Journal of Lightning Research, 2009, 1(1): 1–8. doi: 10.2174/1652803400901010001 [12] GUO J, ZHANG X D, WANG B Y, et al. A three-dimensional direct lightning strike model for lightning protection of the substation[J]. IET Generation, Transmission & Distribution, 2021, 15(19): 2760–2772. [13] 万浩江, 魏光辉, 陈亚洲, 等. 雷电先导放电通道内电场和电荷的分布特征[J]. 中国舰船研究, 2015, 10(2): 55–59,64. doi: 10.3969/j.issn.1673-3185.2015.02.010WAN H J, WEI G H, CHEN Y Z, et al. Distribution features of the electric field and charge density in the lightning leader channel[J]. Chinese Journal of Ship Research, 2015, 10(2): 55–59,64 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.02.010 [14] ERIKSSON A J. An improved electrogeometric model for transmission line shielding analysis[J]. IEEE Transactions on Power Delivery, 1987, 2(3): 871–886. doi: 10.1109/TPWRD.1987.4308192 [15] DELLERA L, GARBAGNATI E. Lightning stroke simulation by means of the leader progression model. II. Exposure and shielding failure evaluation of overhead lines with assessment of application graphs[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 2023–2029. doi: 10.1109/61.103697 [16] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑物防雷设计规范: GB 50057—2010[S]. 北京: 中国计划出版社, 2011.Ministry of Housing and Urban-rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for design protection of structures against lightning: GB 50057-2010[S]. Beijing: China Plans Press, 2011 (in Chinese). [17] 张小青. 预测竖直杆体的年雷击率[J]. 电工技术学报, 2005, 20(3): 70–74. doi: 10.3321/j.issn:1000-6753.2005.03.013ZHANG X Q. Prediction of the annual incidence of lightning strikes to erect masts[J]. Transactions of China Electrotechnical Society, 2005, 20(3): 70–74 (in Chinese). doi: 10.3321/j.issn:1000-6753.2005.03.013 [18] GOLDE R H. Lightning[M]. New York: Academic Press, 1977: 225-226. [19] LOVE E R. Improvement on lightning stroke modelling and applications to design of EHV and UHV transmission lines[D]. Denver: University of Colorado, 1973. [20] KERN A, SCHELTHOFF C, MATHIEU M. Probability of lightning strikes to air-terminations of structures using the electro-geometrical model theory and the statistics of lightning current parameters[J]. Atmospheric Research, 2012, 117: 2–11. doi: 10.1016/j.atmosres.2011.01.009 -
ZG2483_en.pdf
-