留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

避雷针防护概率数值评估方法

王帮勇 陆佳骏 祁德 张旭东 曹斌 郭俊 谢彦召

王帮勇, 陆佳骏, 祁德, 等. 避雷针防护概率数值评估方法[J]. 中国舰船研究, 2023, 18(2): 194–203 doi: 10.19693/j.issn.1673-3185.02483
引用本文: 王帮勇, 陆佳骏, 祁德, 等. 避雷针防护概率数值评估方法[J]. 中国舰船研究, 2023, 18(2): 194–203 doi: 10.19693/j.issn.1673-3185.02483
WANG B Y, LU J J, QI D, et al. Numerical evaluation method of lightning rod protection probability[J]. Chinese Journal of Ship Research, 2023, 18(2): 194–203 doi: 10.19693/j.issn.1673-3185.02483
Citation: WANG B Y, LU J J, QI D, et al. Numerical evaluation method of lightning rod protection probability[J]. Chinese Journal of Ship Research, 2023, 18(2): 194–203 doi: 10.19693/j.issn.1673-3185.02483

避雷针防护概率数值评估方法

doi: 10.19693/j.issn.1673-3185.02483
基金项目: 国家自然科学基金资助项目(51807158);强脉冲辐射环境模拟与效应国家重点实验室资助项目(SKLIPR1909)
详细信息
    作者简介:

    王帮勇,男,1995年生,硕士生。研究方向:雷电模拟及防雷技术。E-mail:a523941858@stu.xjtu.edu.cn

    郭俊,男,1986年生,博士,副教授。研究方向:多导体传输线瞬态分析,瞬态电磁场测量等。E-mail:junguo@mail.xjtu.edu.cn

    谢彦召,男,1973年生,博士,教授,博士生导师。研究方向:电磁兼容与电磁安全。E-mail:yanzhao.xie@gmail.com

    通信作者:

    郭俊

  • 中图分类号: U665.2

Numerical evaluation method of lightning rod protection probability

知识共享许可协议
避雷针防护概率数值评估方法王帮勇,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  针对传统避雷针防护效能评估方法难以对其防护概率进行高效评估的现状,基于电气几何模型和引雷空间理论发展一种避雷针防护概率数值评估高效算法,实现避雷针对空间任意点防护概率的高效计算。  方法  首先,根据上下行先导的拦截过程确定避雷针与保护物的引雷空间边界;然后,再由雷击距画出受雷曲面与暴露弧,通过分析受雷曲面和暴露弧的不同特征,量化评估避雷针的引雷风险与接闪效能;最后,综合避雷针引雷与防雷两方面特性建立防护概率的数值评估模型。为检验该方法的准确性,分析避雷针防护概率变化的一般规律,并将结果与已有的分析方法进行对比。  结果  结果表明,该方法的评估结果与经典雷电先导发展模型理论的雷击模拟结果相符。  结论  该方法量化程度高,可以实现避雷针对空间任一点防护概率的高效计算,有助于防雷设计工作。
  • 图  避雷针的引雷示意图

    Figure  1.  Schematic diagram of conducting the lightning to the ground via lightning rod

    图  避雷针引雷空间边界

    Figure  2.  The atrractive volume boundary of lightning rod

    图  避雷针在雷击距为Rs时的受雷曲面

    Figure  3.  Collection surface of lightning rod at the stroke distance of Rs

    图  避雷针等效暴露面积计算方法

    Figure  4.  Calculation method of equivalent exposure area of lightning rod

    图  雷击距小于避雷针高度时的受雷曲面

    Figure  5.  Collection surface when the stroke distance is less than the height of lightning rod

    图  圆柱面等效暴露面积分解

    Figure  6.  Equivalent exposed area of cylinder surface

    图  避雷针防雷系统示意图

    Figure  7.  Schematic diagram of lightning rod protection system

    图  避雷针−杆体系统引雷空间与暴露弧

    Figure  8.  Attractive volume and exposure arc of lightning rod-mast system

    图  避雷针−杆体系统在不同雷击距下的暴露弧

    Figure  9.  Exposure arc of lightning rod-mast system with different stroke distances

    图  10  避雷针防护概率随针高的变化曲线

    Figure  10.  Variation of protection probability with the height of lightning rod

    图  11  引雷风险随避雷针针高度的变化曲线

    Figure  11.  Variation of attractive risk with the height of lightning rod

    图  12  不同防护效能的避雷针保护范围与RSM和LPM方法对比结果

    Figure  12.  Protection range of lightning rod with different effectiveness and comparisons with the evaluation results by RSM and LPM

    图  13  LPM仿真结果

    Figure  13.  Simulation results of LPM

    图  14  本文方法与LPM的避雷针防护概率评估结果对比

    Figure  14.  Comparison of lightning rod protection probability evaluation results obtained by the method in this paper and LPM

    表  避雷针防护概率评估结果与计算效率

    Table  1.  Evaluation results and calculation efficiency of lightning rod protection probability

    避雷针高度/mLPM本文方法
    防护概率P1/%平均耗时/min防护概率P2/%平均耗时/s
    15754549.79<1
    20804562.69<1
    25834576.56<1
    30854585.93<1
    35914590.64<1
    40924592.66<1
    下载: 导出CSV
  • [1] 电力工业部科学技术司. 交流电气装置的过电压保护和绝缘配合: DL/T 620—1997[S]. 北京: 中国电力出版社, 1997.

    Ministry of Electric Power Industry of the People's Republic of China. Overvoltage protection and insulation coordination for AC electrical installations: DL/T 620-1997[S]. Beijing: China Electric Power Press, 1997 (in Chinese).
    [2] 中华人民共和国住房和城乡建设部. 交流电气装置的过电压保护和绝缘配合设计规范: GB/T 50064—2014[S]. 北京: 中国计划出版社, 2014.

    Ministry of Housing and Urban-rural Development of the People's Republic of China. Code for design of overvoltage protection and insulation coordination for AC electrical installations: GB/T 50064-2014[S]. Beijing: China Planning Press, 2014 (in Chinese).
    [3] BRUSSO B. The electrogeometrical model of the rolling sphere method[J]. IEEE Industry Applications Magazine, 2016, 22(2): 7–70. doi: 10.1109/MIAS.2015.2503940
    [4] GOLDE R H. The frequency of occurrence and the distribution of lightning flashes to transmission lines[J]. Transactions of the American Institute of Electrical Engineers, 1945, 64(12): 902–910. doi: 10.1109/T-AIEE.1945.5059060
    [5] Substations Committee of the IEEE Power Engineering Society. IEEE guide for direct lightning stroke shielding of substations: IEEE Std 998-1996[S]. New York: American National Standards Institute, 1996.
    [6] LEE R H. Lightning protection of buildings[J]. IEEE Transactions on Industry Applications, 1979, IA-15(3): 236–240. doi: 10.1109/TIA.1979.4503648
    [7] DELLERA L, GARBAGNATI E. Lightning stroke simulation by means of the leader progression model. I. Description of the model and evaluation of exposure of free-standing structures[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 2009–2022. doi: 10.1109/61.103696
    [8] ERIKSSON A J, MOUSA A M. Discussion of "Lightning stroke simulation by means of the leader progression model. II. Exposure and shielding failure evaluation of overhead lines with assessment of application graphs" by L. Dellera and E. Garbagnati (and replies)[J]. IEEE Transactions on Power Delivery, 1991, 6(1): 456–460. doi: 10.1109/61.103771
    [9] RIZK F A M. Modeling of transmission line exposure to direct lightning strokes[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1983–1997. doi: 10.1109/61.103694
    [10] RIZK F A M. Switching impulse strength of air insulation: leader inception criterion[J]. IEEE Transactions on Power Delivery, 1989, 4(4): 2187–2195. doi: 10.1109/61.35646
    [11] ZHANG X W, DONG L, HE J L, et al. Study on the effectiveness of single lightning rods by a fractal approach[J]. Journal of Lightning Research, 2009, 1(1): 1–8. doi: 10.2174/1652803400901010001
    [12] GUO J, ZHANG X D, WANG B Y, et al. A three-dimensional direct lightning strike model for lightning protection of the substation[J]. IET Generation, Transmission & Distribution, 2021, 15(19): 2760–2772.
    [13] 万浩江, 魏光辉, 陈亚洲, 等. 雷电先导放电通道内电场和电荷的分布特征[J]. 中国舰船研究, 2015, 10(2): 55–59,64. doi: 10.3969/j.issn.1673-3185.2015.02.010

    WAN H J, WEI G H, CHEN Y Z, et al. Distribution features of the electric field and charge density in the lightning leader channel[J]. Chinese Journal of Ship Research, 2015, 10(2): 55–59,64 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.02.010
    [14] ERIKSSON A J. An improved electrogeometric model for transmission line shielding analysis[J]. IEEE Transactions on Power Delivery, 1987, 2(3): 871–886. doi: 10.1109/TPWRD.1987.4308192
    [15] DELLERA L, GARBAGNATI E. Lightning stroke simulation by means of the leader progression model. II. Exposure and shielding failure evaluation of overhead lines with assessment of application graphs[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 2023–2029. doi: 10.1109/61.103697
    [16] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑物防雷设计规范: GB 50057—2010[S]. 北京: 中国计划出版社, 2011.

    Ministry of Housing and Urban-rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for design protection of structures against lightning: GB 50057-2010[S]. Beijing: China Plans Press, 2011 (in Chinese).
    [17] 张小青. 预测竖直杆体的年雷击率[J]. 电工技术学报, 2005, 20(3): 70–74. doi: 10.3321/j.issn:1000-6753.2005.03.013

    ZHANG X Q. Prediction of the annual incidence of lightning strikes to erect masts[J]. Transactions of China Electrotechnical Society, 2005, 20(3): 70–74 (in Chinese). doi: 10.3321/j.issn:1000-6753.2005.03.013
    [18] GOLDE R H. Lightning[M]. New York: Academic Press, 1977: 225-226.
    [19] LOVE E R. Improvement on lightning stroke modelling and applications to design of EHV and UHV transmission lines[D]. Denver: University of Colorado, 1973.
    [20] KERN A, SCHELTHOFF C, MATHIEU M. Probability of lightning strikes to air-terminations of structures using the electro-geometrical model theory and the statistics of lightning current parameters[J]. Atmospheric Research, 2012, 117: 2–11. doi: 10.1016/j.atmosres.2011.01.009
  • ZG2483_en.pdf
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  116
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 修回日期:  2021-09-04
  • 网络出版日期:  2023-04-11
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回