Multi-objective optimization study on dimensions of medium-sized cruise ship in concept phase
-
摘要:
目的 针对中型邮轮初步设计阶段确定尺度时影响因素多、参考资料少的问题,提出一种基于尺度与性能指标拟合简化的多目标优化方法。 方法 首先,对国际在航邮轮尺度进行分析,高精度拟合中型邮轮尺度特征参数,并结合最新公约要求,确定尺度优化范围。然后,分析邮轮尺度参数对空间、阻力、稳性、耐波性的影响程度,建立目标表达方式;并基于遗传算法原理,确定鲁棒性、工程适应性高的多目标优化算法,以某中型邮轮初步设计尺度优化为目标,建立多目标优化模型并展开研究。最后,分析多目标优化得到的Pareto解集,优选目标邮轮的初始尺度。 结果 基于遗传算法实现的优化程序,在某中型邮轮初步设计阶段进行了工程实践应用,为该邮轮提供了合理的初始尺度。 结论 简化的多目标优化模型为中型邮轮初步设计阶段主尺度决策提供了一种解决方案;多目标优化得到的Pareto集,不同解针对邮轮阻力、稳性等不同的技术性能指标有不同的侧重点,工程中可根据设计需求选择适用解。 Abstract:Objective Aiming at the problem of too many influencing factors and too little reference data for determining the dimensions of medium-sized cruise ships in the concept phase, a simplified multi-objective optimization method based on the fitting of dimensions and performance is proposed. Method First, the dimension relations of medium-sized cruise ships are analyzed and the influence of the latest SOLAS requirements used to determine the optimization range. Second, the influence of cruise ship dimensions on space, resistance, stability and seakeeping are analyzed. Next, based on the principles of genetic algorithms, a multi-objective optimization algorithm with high robustness and high engineering adaptability is determined to establish a multi-objective optimization model for the concept design of medium-sized cruise ships. Finally, the Pareto solution obtained by multi-objective optimization is analyzed to provide initial references for determining the dimensions of the target cruise ship. Results Implemented via a genetic algorithm, the optimization program proposed herein is applied in the concept design of a medium-sized cruise ship in order to optimize the initial dimensions, thereby achieving the expected outcome of providing reasonable initial dimensions for cruise ship design. Conclusion The proposed simplified multi-objective optimization model can provide feasible initial dimensions for medium-sized cruise ships in the concept phase. As the Pareto solution obtained by multi-objective optimization has different focuses such as resistance and stability, the most suitable solution needs to be selected according to the design object. -
Key words:
- medium-sized cruise ship /
- dimensions /
- multi-objective optimization /
- Pareto solution
-
表 1 决策变量上限和下限
Table 1. Upper and lower limit of decision variables
参数 下限值 上限值 船长L/m 210 250 型宽B/m 27 32 吃水T/m 6.2 7.0 方形系数$ {C_{\text{b}}} $ 0.62 0.72 表 2 Pareto解集特例
Table 2. Special case in Pareto solution
L B T Cb EHP GM A $ {T_\theta } $ R1 249.8 29.54 6.30 0.649 1.000 0 0.220 0 0.115 0 0.460 0 0.211 0 230.1 31.97 6.24 0.652 0.860 0 1.000 0 0.926 0 0 0.065 0 230.0 32.00 6.20 0.717 0 0.996 0 1.000 0 0.074 0 0.797 0 245.8 29.66 6.66 0.689 0.559 0 0.013 0 0.028 0 1.000 0 0.479 0 249.4 29.73 6.20 0.720 0.175 0 0.241 3 0.214 5 0.547 7 1.000 0 -
[1] 李兰美, 黄斐, 陈明铭. 豪华邮轮建造特点初步分析[J]. 造船技术, 2014(2): 10–13,26. doi: 10.3969/j.issn.1000-3878.2014.02.003LI L M, HUANG F, CHEN M M. Initial analysis of building characteristic on cruise ship[J]. Marine Technology, 2014(2): 10–13,26 (in Chinese). doi: 10.3969/j.issn.1000-3878.2014.02.003 [2] ZHANG L, ZHANG J N, ZOU Y. Multi-objective optimization method in the main dimensions of high performance ship based on current EEDI[C]//Proceedings of the 26th International Ocean and Polar Engineering Conference. Rhodes, Greece: [s. n.], 2016: 851-856. [3] 程红蓉, 刘晓东, 冯佰威. 多目标优化在船型设计中的应用研究[J]. 中国造船, 2014, 55(1): 76–82. doi: 10.3969/j.issn.1000-4882.2014.01.009CHENG H R, LIU X D, FENG B W. Study on multidisciplinary optimization method for hull forms design[J]. Shipbuilding of China, 2014, 55(1): 76–82 (in Chinese). doi: 10.3969/j.issn.1000-4882.2014.01.009 [4] YAN Y M, ZHANG H R, LONG Y, et al. Multi-objective design optimization of combined cooling, heating and power system for cruise ship application[J]. Journal of Cleaner Production, 2019, 233(9): 264–279. [5] PRIFTIS A, BOULOUGOURIS E, TURAN O, et al. Multi-objective robust early stage ship design optimisation under uncertainty utilising surrogate models[J]. Ocean Engineering, 2020, 197: 106850. doi: 10.1016/j.oceaneng.2019.106850 [6] 卓宏明, 陈倩清. 基于均匀正交萤火虫算法的采矿船主尺度优化[J]. 船海工程, 2020, 49(5): 76–80. doi: 10.3963/j.issn.1671-7953.2020.05.018ZHUO H M, CHEN Q Q. Optimization of principal dimensions based on uniform orthogonal firefly algorithm for mining ships[J]. Ship & Ocean Engineering, 2020, 49(5): 76–80 (in Chinese). doi: 10.3963/j.issn.1671-7953.2020.05.018 [7] 周大伟, 许辉, 赵海江, 等. 舰船主尺度论证中的多目标综合评估[J]. 中国舰船研究, 2011, 6(6): 71–74. doi: 10.3969/j.issn.1673-3185.2011.06.014ZHOU D W, XU H, ZHAO H J, et al. Multi-objective synthesized evaluation in principal dimensions design of ship[J]. Chinese Journal of Ship Research, 2011, 6(6): 71–74 (in Chinese). doi: 10.3969/j.issn.1673-3185.2011.06.014 [8] 陈雅菊. 基于多目标粒子群优化和主成分聚类分析的船舶主尺度分析[J]. 舰船科学技术, 2015, 37(8): 45–51. doi: 10.3404/j.issn.1672-7649.2015.08.010CHEN Y J. Application of multiobjective particle swarm optimization and principle component clustering analysis in ship main dimensions analysis[J]. Ship Science and Technology, 2015, 37(8): 45–51 (in Chinese). doi: 10.3404/j.issn.1672-7649.2015.08.010 [9] 耿焕同, 戴中斌, 王天雷, 等. 基于参考点选择策略的改进型NSGA-III算法[J]. 模式识别与人工智能, 2020, 33(3): 191–201. doi: 10.16451/j.cnki.issn1003-6059.202003001GENG H T, DAI Z B, WANG T L, et al. Improved NSGA-III algorithm based on reference point selection strategy[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(3): 191–201 (in Chinese). doi: 10.16451/j.cnki.issn1003-6059.202003001 [10] 李华, 杨宇琨. 基于关键参数分析的全球邮轮船型特征研究[J]. 海洋开发与管理, 2017, 34(2): 10–16. doi: 10.3969/j.issn.1005-9857.2017.02.002LI H, YANG Y K. Character of global cruise type based on key parameters analysis[J]. Ocean Development and Management, 2017, 34(2): 10–16 (in Chinese). doi: 10.3969/j.issn.1005-9857.2017.02.002 [11] 中国船级社. 邮轮规范2017[EB/OL]. (2016-10-11) [2021-08-01]. https://www.ccs.org.cn/ccswz/articleDetail?id=201900001000007693.China Classification Society. Rules for cruise ships 2017[EB/OL]. (2016-10-11) [2021-08-01]. https://www.ccs.org.cn/ccswz/articleDetail?id=201900001000007693(in Chinese). [12] Maritime Safety Committee of International Maritime Organization. Amendments to the international convention for the safety of life at sea, 1974, as amended:resolution MSC. 421(98)[S]. [S.l.]: The Maritime Safety Committee of International Maritime Organization, 2017. [13] 马网扣, 王露, 董良志, 等. SOLAS 2020破舱稳性对大型邮轮主尺度规划的影响[J]. 中国造船, 2019, 60(3): 46–54.MA W K, WANG L, DONG L Z, et al. Impact of SOLAS 2020 damage stability on main dimensions planning of large cruise ships[J]. Shipbuilding of China, 2019, 60(3): 46–54 (in Chinese). [14] 陈佳宝, 徐青, 田斌斌. 基于阻力图谱的船型参数敏感度分析[J]. 舰船科学技术, 2019, 41(2): 14–18. doi: 10.3404/j.issn.1672-7649.2019.02.003CHEN J B, XU Q, TIAN B B. Sensitivity analysis of ship hull parameters based on resistance altas[J]. Ship Science and Technology, 2019, 41(2): 14–18 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.02.003 [15] 中国船舶工业集团公司, 中国船舶重工集团公司, 中国造船工程学会. 船舶设计实用手册: 总体分册[M]. 3版. 北京: 国防工业出版社, 2013: 840-844.China State Shipbuilding Group Co., Ltd., China Shipbuilding Industry Group Co., Ltd. , Chinese Society of Naval Architects and Marine Engineers. Practical manual on ship design[M]. 3rd ed. Beijing: National Defense Industry Press, 2013: 840-844 (in Chinese). [16] International Maritime Organization. International code on intact stability 2008: IMO IB874E-2009[Z]. 3rd ed. United Kingdom: CPI Books Limited, 2009. -