Longitudinal bending characteristics and design requirements of composite material superstructures
-
摘要:
目的 针对复合材料上层建筑总纵强度问题,采用有限元分析法开展复合材料上层建筑总纵弯曲特性与设计要求分析。 方法 首先,分析不同长度、不同上层建筑材料等效弹性模量下简化船体模型纵向应变沿高度方向的分布规律,并利用二次函数对纵向应变分布进行非线性拟合;然后,基于拟合的结果提出复合材料上层建筑设计要求,并在结构形式与材料属性两方面对设计要求进行阐述;最后,根据弯矩有效度概念,在国军标的基础上提出不同长度、不同材料下上层建筑完全参与总纵弯曲的判定方法。 结果 分析结果表明,常见的树脂基纤维增强复合材料能够满足上层建筑结构的总纵强度要求;超过0.3倍船长的复合材料上层建筑结构应当计入剖面强度和刚度校核。 结论 所做研究可为未来我国复合材料上层建筑结构的水面舰船设计提供一定的参考价值。 Abstract:Objective To tackle the problem of the longitudinal strength of composite superstructures, the finite element analysis method is used to study their longitudinal bending characteristics and design requirements. Method First, an analysis is made of the longitudinal strain distribution along the height direction of a simplified hull model with different lengths and the equivalent elastic moduli of superstructure materials, and the quadratic function is used to perform nonlinear fitting. Second, the design requirements of composite superstructures are proposed based on the fitting results and explained in terms of both structural size and material properties. Finally, based on the concept of bending moment effectiveness and national military standards, a superstructure method with different elastic moduli and lengths is proposed that fully participates in longitudinal bending determination. Results The results show that glass fiber and carbon fiber reinforced plastic reach the longitudinal strength requirements of superstructures, and composite superstructures longer than 0.3 times the length of the hull should be included in section stiffness checks. Conclusion The results of this study can provide references for the future design of naval ships with composite materials. -
Key words:
- composite materials /
- superstructures /
- longitudinal bending /
- effectiveness
-
表 1 模型端面参考点边界条件
Table 1. Boundary conditions of the reference point at model end-face
参考点位置 线位移 角位移 ${\delta _x}$ ${\delta _y}$ ${\delta _{\textit{z}}}$ ${\theta _x}$ ${\theta _y}$ ${\theta _{\textit{z}}}$ 舱段后端面 约束 约束 舱段前端面 约束 约束 约束 约束 表 2 待定参数拟合结果
Table 2. Fitting results of undetermined parameters
待定参数 拟合结果 A $2.240\; 8 \times {10^7}$ B $5.197\;4 \times {10^6}$ C $0.311\;63$ D $3.421$ 表 3 简化模型弯矩有效度计算结果
Table 3. Calculation results of bending moment effectiveness of simplified models
弹性模量比E* 弯矩有效度$\gamma $/% L* = 0.1 L* = 0.15 L* = 0.2 L* = 0.3 L* = 0.4 L* = 0.5 0.1 1.7 2.8 4.1 6.9 9.5 11.5 0.3 4.6 7.3 10.6 17.4 23.4 27.9 0.5 7.0 10.8 15.4 24.9 33.0 39.0 0.7 9.3 13.2 19.2 30.6 40.2 47.1 1.0 11.4 16.8 23.4 36.9 48.0 55.7 -
[1] MOURITZ A P, GELLERT E, BURCHILL P, et al. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures, 2001, 53(1): 21–42. doi: 10.1016/S0263-8223(00)00175-6 [2] 李晓文, 朱兆一, 李妍, 等. 复合材料–金属混合船舶极限强度研究综述[J]. 船舶力学, 2020, 24(5): 681–692. doi: 10.3969/j.issn.1007-7294.2020.05.014LI X W, ZHU Z Y, LI Y, et al. A review on ultimate strength of composite-metal hybrid ships[J]. Journal of Ship Mechanics, 2020, 24(5): 681–692 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.05.014 [3] 梅志远. 舰船复合材料结构物应用工程技术特点及内涵分析[J]. 中国舰船研究, 2021, 16(2): 1–8. doi: 10.19693/j.issn.1673-3185.02098MEI Z Y. Characteristic analysis and prospect of applied engineering technology for composite structures of naval ships[J]. Chinese Journal of Ship Research, 2021, 16(2): 1–8 (in Chinese). doi: 10.19693/j.issn.1673-3185.02098 [4] 中国人民解放军总装备部. 舰船通用规范总册: GJB 4000—2000[S]. 北京: 总装备部军标出版发行部, 2000.PLA General Equipment Department. General specifications for naval ships general volum: GJB 4000−2000[S]. Beijing: PLA GED Standard Press, 2000 (in Chinese). [5] MORSHEDSOLUK F, KHEDMATI M R. Ultimate strength of composite ships' hull girders in the presence of composite superstructures[J]. Thin-Walled Structures, 2016, 102: 122–138. doi: 10.1016/j.tws.2016.01.024 [6] 王西典. 计入有效度的强力上层建筑设计研究[D]. 上海: 上海交通大学, 2015.WANG X D. Research on design of effective superstructure concerning its effectiveness[D]. Shanghai: Shanghai Jiao Tong University, 2015 (in Chinese). [7] 王福花, 伍友军, 王德禹. 强力上层建筑的有效度及其设计[J]. 中国造船, 2006, 47(3): 22–29. doi: 10.3969/j.issn.1000-4882.2006.03.003WANG F H, WU Y J, WANG D Y. Research on superstructure contributing to hull girder strength and its design[J]. Shipbuilding of China, 2006, 47(3): 22–29 (in Chinese). doi: 10.3969/j.issn.1000-4882.2006.03.003 [8] 吕杰. 夹芯复合材料上层建筑结构强度研究[D]. 武汉: 武汉理工大学, 2016.LV J. Strength analysis of composite sandwich superstructure[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese). [9] CRAWFOR D. Theory of long ship's superstructures[J]. Trans, Society of Naval Architects and Marine Engineers, 1950, 4: 693. [10] MUCKLE W. The influence of proportions on the behaviour of partial superstructures constructed of aluminium alloy[J]. Aluminium Development Association, 1995, 3: 250–271. [11] NAAR H, VARSTA P, KUJALA P. A theory of coupled beams for strength assessment of passenger ships[J]. Marine Structures, 2004, 17(8): 590–611. doi: 10.1016/j.marstruc.2005.03.004 [12] 李晓文, 朱兆一, 李妍, 等. 船舶复合材料上层建筑概念设计及力学行为研究[J]. 船舶工程, 2018, 40(5): 88–93. doi: 10.13788/j.cnki.cbgc.2018.05.088LI X W, ZHU Z Y, LI Y, et al. Concept design and mechanical behavior research of composite superstructure for ships[J]. Ship Engineering, 2018, 40(5): 88–93 (in Chinese). doi: 10.13788/j.cnki.cbgc.2018.05.088 [13] 于辉, 陈志鹏, 周芸, 等. 一体化复合材料上层建筑结构设计优化[J]. 中国造船, 2017, 58(2): 30–37. doi: 10.3969/j.issn.1000-4882.2017.02.004YU H, CHEN Z P, ZHOU Y, et al. Optimal design of integrative superstructure in composite materials[J]. Ship-building of China, 2017, 58(2): 30–37 (in Chinese). doi: 10.3969/j.issn.1000-4882.2017.02.004 [14] 中国人民解放军总装备部. 水面舰艇结构设计计算方法: GJB/Z 119-99[S]. 北京: 总装备部军标出版发行部, 1999.PLA General Equipment Department. Method for structural design and strength calculation of naval surface ships: GJB/Z 119-99[S]. Beijing: PLA GED Standard Press, 1999 (in Chinese). [15] 陈倩, 张世联, 李源源. 铝合金上层建筑参与船体总纵弯曲的特性研究[J]. 船舶工程, 2011, 33(增刊2): 21-24, 28.CHEN Q, ZHANG S L, LI Y Y. Characteristics study on longitudinal bending of aluminum alloy superstructure jointed with main hull[J]. Ship Engineering, 2011, 33(Supp 2): 21-24, 28 (in Chinese). -