Flexural wave bandgap and isolation characteristics of vibration and sound in periodic sandwich plates
-
摘要:
目的 旨在研究轻质夹芯板弹性波的传播规律与减振降噪机理。 方法 采用有限元方法结合布洛赫定理,对周期性夹芯板色散关系与弯曲波带隙特性进行研究,分析振动传输特性和声传输特性,研究轻质夹芯板减振降噪特性,并对轻质夹芯板振动传递衰减特性进行实验验证。 结果 研究结果表明,由于布拉格(Bragg)散射调制作用,轻质夹芯板在特定频段存在弯曲波带隙,弯曲振动带隙频率范围内具有良好的减振降噪效果。 结论 轻质夹芯板结构参数对弯曲波带隙具有显著的调节作用,为舰船结构振动噪声控制与声隐身设计提供了新的技术途径。 Abstract:Objective This paper aims to study the elastic wave propagation characteristics and vibration and noise reduction mechanisms of periodic ship sandwich plates. Method To this end, the dispersion relation and flexural wave bandgap characteristics of lightweight sandwich plates are numerically investigated using the finite element method in combination with the Bloch theorem. The flexural vibration and sound transmission properties are analyzed to study vibration and sound reduction, and experimental validation is further conducted to verify the numerical results. Results Lightweight sandwich plates can yield flexural wave bandgaps in a specific frequency range due to the Bragg scattering effect, resulting in flexural vibration isolation and sound insulation. Conclusion Flexural wave bandgaps can be effectively tuned by geometrical parameters, and this technology can potentially be applied in the vibration and sound control of ship structures. -
表 1 板架结构的几何参数
Table 1. Geometric parameters of stiffened plate
参数 数值 面板长度/mm 2 000 面板宽度/mm 1 000 面板厚度/mm 6 纵骨(T型材)规格/mm TN 50 ×50 ×5 ×7 肋骨(L型材)规格/mm L 30 ×3 -
[1] LIN T R, PAN J, O'SHEA P J, et al. A study of vibration and vibration control of ship structures[J]. Marine Structures, 2009, 22(4): 730–743. doi: 10.1016/j.marstruc.2009.06.004 [2] KANDASAMY R, CUI F S, TOWNSEND N, et al. A review of vibration control methods for marine offshore structures[J]. Ocean Engineering, 2016, 127: 279–297. doi: 10.1016/j.oceaneng.2016.10.001 [3] ZHANG B L, HAN Q L, ZHANG X M. Recent advances in vibration control of offshore platforms[J]. Nonlinear Dynamics, 2017, 89(2): 755–771. doi: 10.1007/s11071-017-3503-4 [4] 吴崇建, 雷智洋, 徐鑫彤, 等. 螺旋桨低频振动声辐射特性研究——水母效应[J]. 中国舰船研究, 2020, 15(5): 154–160. doi: 10.19693/j.issn.1673-3185.02024WU C J, LEI Z Y, XU X T, et al. An analysis of low-frequency propeller vibration and sound radiation characteristics: The Jellyfish effect[J]. Chinese Journal of Ship Research, 2020, 15(5): 154–160 (in Chinese). doi: 10.19693/j.issn.1673-3185.02024 [5] 游晶越, 赵耀, 张赣波, 等. 艇体弹性耦合边界条件下轴系纵振反共振隔振分析[J]. 中国舰船研究, 2020, 15(6): 137–142. doi: 10.19693/j.issn.1673-3185.01802YOU J Y, ZHAO Y, ZHANG G B, et al. Anti-resonance vibration isolation analysis of shafting longitudinal vibration under elastic coupling of hull[J]. Chinese Journal of Ship Research, 2020, 15(6): 137–142 (in Chinese). doi: 10.19693/j.issn.1673-3185.01802 [6] 赵新豪, 李源源, 袁昱超, 等. 基于阻抗失配原理的L延拓型船用隔振基座研究[J]. 中国舰船研究, 2021, 16(3): 144–151. doi: 10.19693/j.issn.1673-3185.01983ZHAO X H, LI Y Y, YUAN Y C, et al. Study of L-extension type ship vibration isolation pedestal based on impedance mismatch principle[J]. Chinese Journal of Ship Research, 2021, 16(3): 144–151 (in Chinese). doi: 10.19693/j.issn.1673-3185.01983 [7] LI Y G, ZHU L, CHEN T N. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation[J]. Ultrasonics, 2017, 73: 34–42. doi: 10.1016/j.ultras.2016.08.019 [8] HSU F C, LEE C I, HSU J C, et al. Acoustic band gaps in phononic crystal strip waveguides[J]. Applied Physics Letters, 2010, 96(5): 051902. doi: 10.1063/1.3298643 [9] 李应刚, 周雷, 朱凌, 等. 周期性阻振质量船体板弯曲振动带隙研究[J]. 船舶力学, 2019, 23(11): 1369–1375. doi: 10.3969/j.issn.1007-7294.2019.11.011LI Y G, ZHOU L, ZHU L, et al. Flexural vibration band gap characteristics of ship plates with periodic vibration blocking masses[J]. Journal of Ship Mechanics, 2019, 23(11): 1369–1375 (in Chinese). doi: 10.3969/j.issn.1007-7294.2019.11.011 [10] 孙勇敢, 黎胜. 周期性加肋板振动带隙研究[J]. 船舶力学, 2016, 20(2): 142–147.SUN Y G, LI S. Vibration band gap research of periodic stiffened plates[J]. Journal of Ship Mechanics, 2016, 20(2): 142–147 (in Chinese). [11] LI Y G, ZHOU Q W, ZHOU L, et al. Flexural wave band gaps and vibration attenuation characteristics in periodic bi-directionally orthogonal stiffened plates[J]. Ocean Engineering, 2019, 178: 95–103. doi: 10.1016/j.oceaneng.2019.02.076 [12] RUAN Y D, LIANG X, HUA X Y, et al. Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals[J]. Ocean Engineering, 2021, 225: 108804. doi: 10.1016/j.oceaneng.2021.108804 [13] 郭旭, 崔洪宇, 洪明. 局域共振声子晶体板的减振降噪研究[J]. 船舶力学, 2021, 25(4): 509–516. doi: 10.3969/j.issn.1007-7294.2021.04.014GUO X, CUI H Y, HONG M. Research on vibration and noise reduction of local resonant phononic crystal plate[J]. Journal of Ship Mechanics, 2021, 25(4): 509–516 (in Chinese). doi: 10.3969/j.issn.1007-7294.2021.04.014 [14] JIANG C J, XIANG Y, HE P, et al. Vibration attenuation behaviors of finite sandwich plates with periodic core[J]. Applied Acoustics, 2020, 157: 107009. doi: 10.1016/j.apacoust.2019.107009 [15] CHEN J S, SHARMA B, SUN C T. Dynamic behaviour of sandwich structure containing spring-mass resonators[J]. Composite Structures, 2011, 93(8): 2120–2125. doi: 10.1016/j.compstruct.2011.02.007 [16] CHEN J S, SUN C T. Reducing vibration of sandwich structures using antiresonance frequencies[J]. Composite Structures, 2012, 94(9): 2819–2826. doi: 10.1016/j.compstruct.2012.03.041 [17] CHEN J S, SUN C T. Wave propagation in sandwich structures with resonators and periodic cores[J]. Journal of Sandwich Structures & Materials, 2013, 15(3): 359–374. [18] LI J Q, FAN X L, LI F M. Numerical and experimental study of a sandwich-like metamaterial plate for vibration suppression[J]. Composite Structures, 2020, 238: 111969. doi: 10.1016/j.compstruct.2020.111969 [19] SONG Y B, FENG L P, WEN J H, et al. Reduction of the sound transmission of a periodic sandwich plate using the stop band concept[J]. Composite Structures, 2015, 128: 428–436. doi: 10.1016/j.compstruct.2015.02.053 [20] SONG Y B, FENG L P, LIU Z B, et al. Suppression of the vibration and sound radiation of a sandwich plate via periodic design[J]. International Journal of Mechanical Sciences, 2019, 150: 744–754. doi: 10.1016/j.ijmecsci.2018.10.055 [21] SONG Y B, WEN J H, TIAN H, et al. Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study[J]. Journal of Sound and Vibration, 2020, 489: 115644. doi: 10.1016/j.jsv.2020.115644 [22] WANG X P, CHEN Y Y, ZHOU G J, et al. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation[J]. Journal of Sound and Vibration, 2019, 459: 114867. doi: 10.1016/j.jsv.2019.114867 [23] MA F Y, XU Y C, WU J H. Modal displacement method for extracting the bending wave bandgap of plate-type acoustic metamaterials[J]. Applied Physics Express, 2019, 12(7): 074004. doi: 10.7567/1882-0786/ab27dd -
ZG2462_en.pdf
-