留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期性舰船夹芯板弯曲波带隙与减振降噪研究

訾欢 李应刚 胡蜜 朱凤娜 朱凌

訾欢, 李应刚, 胡蜜, 等. 周期性舰船夹芯板弯曲波带隙与减振降噪研究[J]. 中国舰船研究, 2023, 18(2): 81–89 doi: 10.19693/j.issn.1673-3185.02462
引用本文: 訾欢, 李应刚, 胡蜜, 等. 周期性舰船夹芯板弯曲波带隙与减振降噪研究[J]. 中国舰船研究, 2023, 18(2): 81–89 doi: 10.19693/j.issn.1673-3185.02462
ZI H, LI Y G, HU M, et al. Flexural wave bandgap and isolation characteristics of vibration and sound in periodic sandwich plates[J]. Chinese Journal of Ship Research, 2023, 18(2): 81–89 doi: 10.19693/j.issn.1673-3185.02462
Citation: ZI H, LI Y G, HU M, et al. Flexural wave bandgap and isolation characteristics of vibration and sound in periodic sandwich plates[J]. Chinese Journal of Ship Research, 2023, 18(2): 81–89 doi: 10.19693/j.issn.1673-3185.02462

周期性舰船夹芯板弯曲波带隙与减振降噪研究

doi: 10.19693/j.issn.1673-3185.02462
基金项目: 国家自然科学基金资助项目(11972269);海南省自然科学基金资助项目(521MS068)
详细信息
    作者简介:

    訾欢,女,1996年生,硕士生。研究方向:船舶振动噪声控制。E-mail:13437189654@163.com

    李应刚,男,1988年生,博士,副教授。研究方向:船舶振动噪声控制。E-mail:liyinggang@whut.edu.cn

    朱凤娜,女,1988年生,硕士,实验员。研究方向:船舶结构振动与冲击防护。E-mail:zhufn2016@whut.edu.cn

    通信作者:

    朱凤娜

  • 中图分类号: U663.7;U668.5

Flexural wave bandgap and isolation characteristics of vibration and sound in periodic sandwich plates

知识共享许可协议
周期性舰船夹芯板弯曲波带隙与减振降噪研究訾欢,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在研究轻质夹芯板弹性波的传播规律与减振降噪机理。  方法  采用有限元方法结合布洛赫定理,对周期性夹芯板色散关系与弯曲波带隙特性进行研究,分析振动传输特性和声传输特性,研究轻质夹芯板减振降噪特性,并对轻质夹芯板振动传递衰减特性进行实验验证。  结果  研究结果表明,由于布拉格(Bragg)散射调制作用,轻质夹芯板在特定频段存在弯曲波带隙,弯曲振动带隙频率范围内具有良好的减振降噪效果。  结论  轻质夹芯板结构参数对弯曲波带隙具有显著的调节作用,为舰船结构振动噪声控制与声隐身设计提供了新的技术途径。
  • 图  周期性轻质夹芯板示意图

    Figure  1.  Schematic diagram of periodic lightweight sandwich plate

    图  舰船加筋板架结构及周期性夹芯板强度分析结果

    Figure  2.  Strength analysis of stiffened plate and periodic sandwich plate of ship

    图  有限元计算模型

    Figure  3.  Finite element calculation model

    图  轻质夹芯板弯曲波带隙与减振特性

    Figure  4.  Flexural wave bandgap and vibration isolation characteristics of lightweight sandwich plate

    图  轻质夹芯板弯曲振动传递与衰减特性

    Figure  5.  Flexural vibration transmission and attenuation characteristics of lightweight sandwich plate

    图  轻质夹芯板隔声特性

    Figure  6.  Sound insulation characteristics of lightweight sandwich plate

    图  周期性舰船夹芯板原胞本征位移场

    Figure  7.  Eigenmodes of periodic lightweight sandwich plate

    图  测试样件及实验测试方案图

    Figure  8.  Test sample and the experimental measurement setup

    图  振动传输特性对比验证

    Figure  9.  Experimental validation of frequency spectra

    图  10  几何参数对弯曲波带隙的影响

    Figure  10.  Effects of geometric parameters on the flexural wave bandgap

    表  板架结构的几何参数

    Table  1.  Geometric parameters of stiffened plate

    参数数值
    面板长度/mm2 000
    面板宽度/mm1 000
    面板厚度/mm6
    纵骨(T型材)规格/mmTN 50 ×50 ×5 ×7
    肋骨(L型材)规格/mmL 30 ×3
    下载: 导出CSV
  • [1] LIN T R, PAN J, O'SHEA P J, et al. A study of vibration and vibration control of ship structures[J]. Marine Structures, 2009, 22(4): 730–743. doi: 10.1016/j.marstruc.2009.06.004
    [2] KANDASAMY R, CUI F S, TOWNSEND N, et al. A review of vibration control methods for marine offshore structures[J]. Ocean Engineering, 2016, 127: 279–297. doi: 10.1016/j.oceaneng.2016.10.001
    [3] ZHANG B L, HAN Q L, ZHANG X M. Recent advances in vibration control of offshore platforms[J]. Nonlinear Dynamics, 2017, 89(2): 755–771. doi: 10.1007/s11071-017-3503-4
    [4] 吴崇建, 雷智洋, 徐鑫彤, 等. 螺旋桨低频振动声辐射特性研究——水母效应[J]. 中国舰船研究, 2020, 15(5): 154–160. doi: 10.19693/j.issn.1673-3185.02024

    WU C J, LEI Z Y, XU X T, et al. An analysis of low-frequency propeller vibration and sound radiation characteristics: The Jellyfish effect[J]. Chinese Journal of Ship Research, 2020, 15(5): 154–160 (in Chinese). doi: 10.19693/j.issn.1673-3185.02024
    [5] 游晶越, 赵耀, 张赣波, 等. 艇体弹性耦合边界条件下轴系纵振反共振隔振分析[J]. 中国舰船研究, 2020, 15(6): 137–142. doi: 10.19693/j.issn.1673-3185.01802

    YOU J Y, ZHAO Y, ZHANG G B, et al. Anti-resonance vibration isolation analysis of shafting longitudinal vibration under elastic coupling of hull[J]. Chinese Journal of Ship Research, 2020, 15(6): 137–142 (in Chinese). doi: 10.19693/j.issn.1673-3185.01802
    [6] 赵新豪, 李源源, 袁昱超, 等. 基于阻抗失配原理的L延拓型船用隔振基座研究[J]. 中国舰船研究, 2021, 16(3): 144–151. doi: 10.19693/j.issn.1673-3185.01983

    ZHAO X H, LI Y Y, YUAN Y C, et al. Study of L-extension type ship vibration isolation pedestal based on impedance mismatch principle[J]. Chinese Journal of Ship Research, 2021, 16(3): 144–151 (in Chinese). doi: 10.19693/j.issn.1673-3185.01983
    [7] LI Y G, ZHU L, CHEN T N. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation[J]. Ultrasonics, 2017, 73: 34–42. doi: 10.1016/j.ultras.2016.08.019
    [8] HSU F C, LEE C I, HSU J C, et al. Acoustic band gaps in phononic crystal strip waveguides[J]. Applied Physics Letters, 2010, 96(5): 051902. doi: 10.1063/1.3298643
    [9] 李应刚, 周雷, 朱凌, 等. 周期性阻振质量船体板弯曲振动带隙研究[J]. 船舶力学, 2019, 23(11): 1369–1375. doi: 10.3969/j.issn.1007-7294.2019.11.011

    LI Y G, ZHOU L, ZHU L, et al. Flexural vibration band gap characteristics of ship plates with periodic vibration blocking masses[J]. Journal of Ship Mechanics, 2019, 23(11): 1369–1375 (in Chinese). doi: 10.3969/j.issn.1007-7294.2019.11.011
    [10] 孙勇敢, 黎胜. 周期性加肋板振动带隙研究[J]. 船舶力学, 2016, 20(2): 142–147.

    SUN Y G, LI S. Vibration band gap research of periodic stiffened plates[J]. Journal of Ship Mechanics, 2016, 20(2): 142–147 (in Chinese).
    [11] LI Y G, ZHOU Q W, ZHOU L, et al. Flexural wave band gaps and vibration attenuation characteristics in periodic bi-directionally orthogonal stiffened plates[J]. Ocean Engineering, 2019, 178: 95–103. doi: 10.1016/j.oceaneng.2019.02.076
    [12] RUAN Y D, LIANG X, HUA X Y, et al. Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals[J]. Ocean Engineering, 2021, 225: 108804. doi: 10.1016/j.oceaneng.2021.108804
    [13] 郭旭, 崔洪宇, 洪明. 局域共振声子晶体板的减振降噪研究[J]. 船舶力学, 2021, 25(4): 509–516. doi: 10.3969/j.issn.1007-7294.2021.04.014

    GUO X, CUI H Y, HONG M. Research on vibration and noise reduction of local resonant phononic crystal plate[J]. Journal of Ship Mechanics, 2021, 25(4): 509–516 (in Chinese). doi: 10.3969/j.issn.1007-7294.2021.04.014
    [14] JIANG C J, XIANG Y, HE P, et al. Vibration attenuation behaviors of finite sandwich plates with periodic core[J]. Applied Acoustics, 2020, 157: 107009. doi: 10.1016/j.apacoust.2019.107009
    [15] CHEN J S, SHARMA B, SUN C T. Dynamic behaviour of sandwich structure containing spring-mass resonators[J]. Composite Structures, 2011, 93(8): 2120–2125. doi: 10.1016/j.compstruct.2011.02.007
    [16] CHEN J S, SUN C T. Reducing vibration of sandwich structures using antiresonance frequencies[J]. Composite Structures, 2012, 94(9): 2819–2826. doi: 10.1016/j.compstruct.2012.03.041
    [17] CHEN J S, SUN C T. Wave propagation in sandwich structures with resonators and periodic cores[J]. Journal of Sandwich Structures & Materials, 2013, 15(3): 359–374.
    [18] LI J Q, FAN X L, LI F M. Numerical and experimental study of a sandwich-like metamaterial plate for vibration suppression[J]. Composite Structures, 2020, 238: 111969. doi: 10.1016/j.compstruct.2020.111969
    [19] SONG Y B, FENG L P, WEN J H, et al. Reduction of the sound transmission of a periodic sandwich plate using the stop band concept[J]. Composite Structures, 2015, 128: 428–436. doi: 10.1016/j.compstruct.2015.02.053
    [20] SONG Y B, FENG L P, LIU Z B, et al. Suppression of the vibration and sound radiation of a sandwich plate via periodic design[J]. International Journal of Mechanical Sciences, 2019, 150: 744–754. doi: 10.1016/j.ijmecsci.2018.10.055
    [21] SONG Y B, WEN J H, TIAN H, et al. Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study[J]. Journal of Sound and Vibration, 2020, 489: 115644. doi: 10.1016/j.jsv.2020.115644
    [22] WANG X P, CHEN Y Y, ZHOU G J, et al. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation[J]. Journal of Sound and Vibration, 2019, 459: 114867. doi: 10.1016/j.jsv.2019.114867
    [23] MA F Y, XU Y C, WU J H. Modal displacement method for extracting the bending wave bandgap of plate-type acoustic metamaterials[J]. Applied Physics Express, 2019, 12(7): 074004. doi: 10.7567/1882-0786/ab27dd
  • ZG2462_en.pdf
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1556
  • HTML全文浏览量:  127
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2022-02-09
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回