留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种应用于脉冲电流注入的线路阻抗稳定网络

王禹博 谢彦召 葛延鹏 吴钰颖 李泽同 王硕威 王文卓

王禹博, 谢彦召, 葛延鹏, 等. 一种应用于脉冲电流注入的线路阻抗稳定网络[J]. 中国舰船研究, 2023, 18(2): 204–210 doi: 10.19693/j.issn.1673-3185.02449
引用本文: 王禹博, 谢彦召, 葛延鹏, 等. 一种应用于脉冲电流注入的线路阻抗稳定网络[J]. 中国舰船研究, 2023, 18(2): 204–210 doi: 10.19693/j.issn.1673-3185.02449
WANG Y B, XIE Y Z, GE Y P, et al. A line impedance stabilization network for pulse current injection[J]. Chinese Journal of Ship Research, 2023, 18(2): 204–210 doi: 10.19693/j.issn.1673-3185.02449
Citation: WANG Y B, XIE Y Z, GE Y P, et al. A line impedance stabilization network for pulse current injection[J]. Chinese Journal of Ship Research, 2023, 18(2): 204–210 doi: 10.19693/j.issn.1673-3185.02449

一种应用于脉冲电流注入的线路阻抗稳定网络

doi: 10.19693/j.issn.1673-3185.02449
基金项目: 国防科技基础加强计划资助项目(2021-JCJQ-ZD-046-00)
详细信息
    作者简介:

    王禹博,男,1996年生,硕士生。研究方向:电磁效应与电磁防护。 E-mail:291417989@qq.com

    谢彦召,男,1973年生,博士,教授,博士生导师。研究方向:电磁环境与电磁安全。E-mail:yanzhao.xie@gmail.com

    葛延鹏,男,1991年生,博士生。研究方向:电磁防护技术。 E-mail:yanpengge91@163.com

    通信作者:

    谢彦召

  • 中图分类号: U665.26;TM862

A line impedance stabilization network for pulse current injection

知识共享许可协议
一种应用于脉冲电流注入的线路阻抗稳定网络王禹博,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  针对现有线路阻抗稳定网络(LISN)在电磁脉冲防护能力上的不足,提出一款适用于电气电子设备脉冲电流注入(PCI)试验的LISN。  方法  通过PSpice时域和频域仿真,结合工程设计要求,针对PCI试验中脉冲电流峰值高、上升快等特点,在现有基础上改良LISN的电路拓扑和物理结构,使其同时具有良好的纳秒脉冲防护性能和阻抗稳定能力,并设计开展脉冲电流防护性能测试和阻抗曲线测试试验。  结果  试验验证结果表明,该LISN可以使电流衰减到注入的脉冲电流值的1/60;试验结果与GJB 151B—2013中5 μH型LISN的阻抗曲线之间的误差小于5%。  结论  该LISN具有较好的阻抗稳定能力和去耦能力,可用于电气电子设备的PCI试验,以保护电源并提高试验的可重复性。
  • 图  5 μH型LISN电路结构图[8]

    Figure  1.  Type 5 μH LISN circuit diagram[8]

    图  5 μH型LISN电磁脉冲防护性能仿真

    Figure  2.  Simulation of electromagnetic pulse protection performance of type 5μH LISN

    图  新型LISN单相电路结构

    Figure  3.  New type LISN single-phase circuit structure

    图  新型LISN电磁脉冲防护性能仿真结果

    Figure  4.  Simulation results of electromagnetic pulse protection performance of new type LISN

    图  新型LISN的阻抗特性仿真

    Figure  5.  Simulation of impedance characteristics of new type LISN

    图  LISN的物理布局

    Figure  6.  The physical layout of LISN

    图  电感线圈的剖面图

    Figure  7.  Section of inductance coil

    图  LISN去耦性能试验配置

    Figure  8.  Configuration for LISN decoupling performance test

    图  EMP脉冲发生器的简化电路结构

    Figure  9.  Simplified circuit structure of EMP pulse generator

    图  10  LISN去耦性能试验平台

    Figure  10.  LISN decoupling performance test platform

    图  11  去耦性能的试验结果与仿真结果对比

    Figure  11.  Comparison between test results and simulation results of decoupling performance

    图  12  LISN阻抗曲线测量方法

    Figure  12.  Measurement method of LISN impedance curve

    图  13  新型LISN阻抗曲线的实测值与标准值对比

    Figure  13.  Comparison between measured results of new type LISN impedance curve and standard curve

    表  LISN参数

    Table  1.  LISN parameters

    参数数值
    L1/μH5
    L2/μH5
    C1/μF30
    C2/μF0.22
    R150
    下载: 导出CSV
  • [1] 谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8): 781–787.

    XIE Y Z, WANG Z J, WANG Q S, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781–787 (in Chinese).
    [2] TESCHE F M, BARNES P R. Extrapolation of measured power system response data to high-altitude EMP excitation[J]. IEEE Transactions on Electromagnetic Compatibility, 1988, 30(3): 386–392. doi: 10.1109/15.3319
    [3] RADASKY W A. Introduction to the special issue on high-altitude electromagnetic pulse (HEMP)[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 410–411. doi: 10.1109/TEMC.2013.2265044
    [4] SHI L H, ZHANG X, SUN Z, et al. An overview of the HEMP research in China[J]. IEEE Transactions on Electro-magnetic Compatibility, 2013, 55(3): 422–430. doi: 10.1109/TEMC.2013.2242080
    [5] ZHANG J, KOO J, MOSELEY R, et al. Modeling injection of electrical fast transients into power and IO pins of ICs[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(6): 1576–1584. doi: 10.1109/TEMC.2014.2332499
    [6] 国防科技工业局. 系统电磁环境效应试验方法: GJB 8848—2016[S]. 北京: 中央军委装备发展部, 2016.

    State Administration of Science, Technology and Indus-try for National defense . Electromagnetic environmental effects test methods for systems: GJB 8848−2016[S]. Beijing: Standards Press of China, 2016: 65−77 (in Chinese).
    [7] 崔志同. HEMP脉冲电流注入的仿真与实验研究[D]. 西安: 西安电子科技大学, 2020.

    CUI Z T. Simulation and experimental research on HEMP pulsed current injection[D]. Xi'an: Xidian University, 2020 (in Chinese).
    [8] 中国人民解放军总装备部. 军用设备和分系统电磁发射和敏感度要求与测量: GJB 151B—2013[S]. 北京: 中国标准出版社, 2013: 80−90.

    General Armament Department of the Chinese People's Liberation Army. Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems: GJB 151B−2013[S]. Beijing: Standards Press of China, 2013: 80−90 (in Chinese).
    [9] 王晓辉, 张晓, 孙新贺. LISN在电力电子设备EMI测试中的应用[J]. 微波学报, 2010, 26(增刊 2): 131−133.

    WANG X H, ZHANG X, SUN X H. Application of LISN in EMI detection of power electronic equipment[J]. Journal of Microwaves, 2010, 26 (Supp 2): 131−133 (in Chinese).
    [10] 李英新, 晁远征, 徐聪. LISN的工作原理及应用浅析[J]. 中国检验检测, 2019, 27(6): 23–25,55. doi: 10.16428/j.cnki.cn10-1469/tb.2019.06.008

    LI Y X, CHAO Y Z, XU C. Analysis on the working principle and application of LISN[J]. China Inspection Body & Laboratory, 2019, 27(6): 23–25,55 (in Chinese). doi: 10.16428/j.cnki.cn10-1469/tb.2019.06.008
    [11] International Special Committee on Radio Interference. Coupling devices for conducted disturbance measurements, Part 1-2: CISPR 16-1-2[S]. [S.l.]: International Electrotechnical Commission, 2017: 14-25.
    [12] OKUYAMA S, OSABE K, TANAKAJIMA K, et al. Improvement of radiated emission measurement reproducibility by VHF-LISN — interim results of international inter-laboratory comparison[C]//Proceedings of 2014 Inter-national Symposium on Electromagnetic Compatibility, Tokyo, Japan: IEEE, 2014: 255−258.
    [13] MITALKUMAR L, NISHA P V, SINDHU T K. Design of a modified three phase line impedance stabilization network for conducted emission test[C]//Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). Chennai, India: IEEE, 2018: 1−5.
    [14] IBUCHI T, MORI S, FUNAKI T. Experimental evaluation of mutual coupling influence on the isolation characteristics of a dual-port v-type line impedance stabilization network[J]. IEEE Electromagnetic Compatibility Magazine, 2018, 7(1): 39–45.
    [15] ANANDA W, CAHYADI S A, INAYATUROHMAN I, et al. The effect of the grounding condition of line impedance stabilization network on the measurement validity of conducted emission parameter[C]//Proceedings of 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS). Denpasar, Indonesia: IEEE, 2017: 498−502.
    [16] ZIADÉ F, KOKALJ M, OUAMEUR M, et al. Improvement of LISN measurement accuracy based on calculable adapters[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 365–377. doi: 10.1109/TIM.2015.2479107
    [17] 岳玲玲. 用于传导干扰测试的多功能线性阻抗稳定网络(LISN)的研究与设计[D]. 北京: 北京交通大学, 2009.

    YUE L L. Multifunctional test system—LISN used for conducted interference test[D]. Beijing: Beijing Jiaotong University, 2009 (in Chinese).
    [18] 赵品彰, 高佳, 刘平. 基于电长度补偿的LISN受试端阻抗VNA校准方法[J]. 安全与电磁兼容, 2014(1): 74–76. doi: 10.3969/j.issn.1005-9776.2014.01.016

    ZHAO P Z, GAO J, LIU P. Calibration method of LISN's impedance by using VNA based on electrical length compensation[J]. Safety & EMC, 2014(1): 74–76 (in Chinese). doi: 10.3969/j.issn.1005-9776.2014.01.016
    [19] Department of Defense. High-altitude electromagnetic pulse (HEMP) protection for ground-based C4I facilities performing critical: MIL−STD−188−125[S]. [S.l.]: Defense Information Systems Agency, 2005: 38-60.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  85
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 修回日期:  2021-10-11
  • 网络出版日期:  2023-04-03
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回