A line impedance stabilization network for pulse current injection
-
摘要:
目的 针对现有线路阻抗稳定网络(LISN)在电磁脉冲防护能力上的不足,提出一款适用于电气电子设备脉冲电流注入(PCI)试验的LISN。 方法 通过PSpice时域和频域仿真,结合工程设计要求,针对PCI试验中脉冲电流峰值高、上升快等特点,在现有基础上改良LISN的电路拓扑和物理结构,使其同时具有良好的纳秒脉冲防护性能和阻抗稳定能力,并设计开展脉冲电流防护性能测试和阻抗曲线测试试验。 结果 试验验证结果表明,该LISN可以使电流衰减到注入的脉冲电流值的1/60;试验结果与GJB 151B—2013中5 μH型LISN的阻抗曲线之间的误差小于5%。 结论 该LISN具有较好的阻抗稳定能力和去耦能力,可用于电气电子设备的PCI试验,以保护电源并提高试验的可重复性。 Abstract:Objective Aiming at the deficiency of the existing line impedance stability network (LISN) in the electromagnetic pulse protection capability, a LISN suitable for the pulse current injection (PCI) test of electrical and electronic equipment is proposed. Methods Aiming at the characteristics of high peak value and fast rise of the pulse current in PCI testing, the circuit structure and physical structure of the LISN are improved on the existing basis through PSpice time-domain and frequency-domain simulation combined with engineering design requirements, thereby giving it good nanosecond pulse protection performance and impedance stability at the same time. Pulse current protection performance test and impedance curve test experiments are then designed and carried out. Results The experimental results show that the improved LISN can attenuate the injected pulse current by 60 times, while the error of its impedance curve is less than 5% compared with the Type 5 μH LISN in GJB 151B-2013. Conclusions The proposed LISN has good impedance stability and decoupling ability, and can be used in the PCI testing of electrical and electronic equipment in order to protect the power supply and improve the repeatability of testing. -
表 1 LISN参数
Table 1. LISN parameters
参数 数值 L1/μH 5 L2/μH 5 C1/μF 30 C2/μF 0.22 R1/Ω 50 -
[1] 谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8): 781–787.XIE Y Z, WANG Z J, WANG Q S, et al. High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 2003, 15(8): 781–787 (in Chinese). [2] TESCHE F M, BARNES P R. Extrapolation of measured power system response data to high-altitude EMP excitation[J]. IEEE Transactions on Electromagnetic Compatibility, 1988, 30(3): 386–392. doi: 10.1109/15.3319 [3] RADASKY W A. Introduction to the special issue on high-altitude electromagnetic pulse (HEMP)[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 410–411. doi: 10.1109/TEMC.2013.2265044 [4] SHI L H, ZHANG X, SUN Z, et al. An overview of the HEMP research in China[J]. IEEE Transactions on Electro-magnetic Compatibility, 2013, 55(3): 422–430. doi: 10.1109/TEMC.2013.2242080 [5] ZHANG J, KOO J, MOSELEY R, et al. Modeling injection of electrical fast transients into power and IO pins of ICs[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(6): 1576–1584. doi: 10.1109/TEMC.2014.2332499 [6] 国防科技工业局. 系统电磁环境效应试验方法: GJB 8848—2016[S]. 北京: 中央军委装备发展部, 2016.State Administration of Science, Technology and Indus-try for National defense . Electromagnetic environmental effects test methods for systems: GJB 8848−2016[S]. Beijing: Standards Press of China, 2016: 65−77 (in Chinese). [7] 崔志同. HEMP脉冲电流注入的仿真与实验研究[D]. 西安: 西安电子科技大学, 2020.CUI Z T. Simulation and experimental research on HEMP pulsed current injection[D]. Xi'an: Xidian University, 2020 (in Chinese). [8] 中国人民解放军总装备部. 军用设备和分系统电磁发射和敏感度要求与测量: GJB 151B—2013[S]. 北京: 中国标准出版社, 2013: 80−90.General Armament Department of the Chinese People's Liberation Army. Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems: GJB 151B−2013[S]. Beijing: Standards Press of China, 2013: 80−90 (in Chinese). [9] 王晓辉, 张晓, 孙新贺. LISN在电力电子设备EMI测试中的应用[J]. 微波学报, 2010, 26(增刊 2): 131−133.WANG X H, ZHANG X, SUN X H. Application of LISN in EMI detection of power electronic equipment[J]. Journal of Microwaves, 2010, 26 (Supp 2): 131−133 (in Chinese). [10] 李英新, 晁远征, 徐聪. LISN的工作原理及应用浅析[J]. 中国检验检测, 2019, 27(6): 23–25,55. doi: 10.16428/j.cnki.cn10-1469/tb.2019.06.008LI Y X, CHAO Y Z, XU C. Analysis on the working principle and application of LISN[J]. China Inspection Body & Laboratory, 2019, 27(6): 23–25,55 (in Chinese). doi: 10.16428/j.cnki.cn10-1469/tb.2019.06.008 [11] International Special Committee on Radio Interference. Coupling devices for conducted disturbance measurements, Part 1-2: CISPR 16-1-2[S]. [S.l.]: International Electrotechnical Commission, 2017: 14-25. [12] OKUYAMA S, OSABE K, TANAKAJIMA K, et al. Improvement of radiated emission measurement reproducibility by VHF-LISN — interim results of international inter-laboratory comparison[C]//Proceedings of 2014 Inter-national Symposium on Electromagnetic Compatibility, Tokyo, Japan: IEEE, 2014: 255−258. [13] MITALKUMAR L, NISHA P V, SINDHU T K. Design of a modified three phase line impedance stabilization network for conducted emission test[C]//Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). Chennai, India: IEEE, 2018: 1−5. [14] IBUCHI T, MORI S, FUNAKI T. Experimental evaluation of mutual coupling influence on the isolation characteristics of a dual-port v-type line impedance stabilization network[J]. IEEE Electromagnetic Compatibility Magazine, 2018, 7(1): 39–45. [15] ANANDA W, CAHYADI S A, INAYATUROHMAN I, et al. The effect of the grounding condition of line impedance stabilization network on the measurement validity of conducted emission parameter[C]//Proceedings of 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS). Denpasar, Indonesia: IEEE, 2017: 498−502. [16] ZIADÉ F, KOKALJ M, OUAMEUR M, et al. Improvement of LISN measurement accuracy based on calculable adapters[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 365–377. doi: 10.1109/TIM.2015.2479107 [17] 岳玲玲. 用于传导干扰测试的多功能线性阻抗稳定网络(LISN)的研究与设计[D]. 北京: 北京交通大学, 2009.YUE L L. Multifunctional test system—LISN used for conducted interference test[D]. Beijing: Beijing Jiaotong University, 2009 (in Chinese). [18] 赵品彰, 高佳, 刘平. 基于电长度补偿的LISN受试端阻抗VNA校准方法[J]. 安全与电磁兼容, 2014(1): 74–76. doi: 10.3969/j.issn.1005-9776.2014.01.016ZHAO P Z, GAO J, LIU P. Calibration method of LISN's impedance by using VNA based on electrical length compensation[J]. Safety & EMC, 2014(1): 74–76 (in Chinese). doi: 10.3969/j.issn.1005-9776.2014.01.016 [19] Department of Defense. High-altitude electromagnetic pulse (HEMP) protection for ground-based C4I facilities performing critical: MIL−STD−188−125[S]. [S.l.]: Defense Information Systems Agency, 2005: 38-60. -