Constructal design of tree-shaped microchannel disc heat sink with wavy walls
-
摘要:
目的 为了满足船舶与水下航行器等对电子器件高效热管理的需求,开展波纹壁树状微通道圆盘热沉的构形设计研究。 方法 提出波纹壁树状微通道圆盘热沉的设计原型,基于构形理论,在给定热沉体积和液冷微通道体积的约束条件下,以综合考虑传热和流动压降的复合性能指标(PEC)最大化为目标,对波纹壁的振幅和波长进行构形设计。 结果 结果表明:与直通道热沉相比,波纹壁能增大换热表面积,且凹穴处能够产生涡,因而能够有效降低最高温度。当入口雷诺数为700,900或1100,增大波纹壁的振幅时,热沉最高温度降低了13.5 K,但是压降损失明显增大;减小波纹壁的波长,热沉最高温度降低了4.7 K,压降损失增幅较小;在给定波长较大时,均存在最优振幅使复合性能指标取得极大值;在给定波长较小时,随着振幅的增加,复合性能指标单调递增。 结论 波纹壁能够显著提升树状微通道圆盘热沉的传热性能。通过构形设计能够获得复合性能最佳的最优几何结构。 Abstract:Objective To meet the efficient thermal management needs of electronic devices such as ships and underwater vehicles, this study focuses on the constructal design of a tree-shaped microchannel disc heat sink with wavy walls. Method A design prototype of the heat sink with wavy walls is first proposed. Based on constructal theory, the amplitude and wavelength of the wavy walls are designed under the constraints of fixed heat sink volume and fixed microchannel volume by maximizing the comprehensive performance evaluation criteria (PEC) while considering both heat transfer and flow pressure drop. Results The results show that the wavy walls increase the heat transfer surface areas and generate vortices in their cavities, effectively reducing the maximum temperature. When the inlet Reynolds number is fixed at 700, 900 or 1100 respectively, the maximum temperature is reduced by 13.5 K by increasing the amplitude of the wavy walls, while the pressure drop increases significantly; and the maximum temperature is reduced by 4.7 K by reducing the wavelength of the wavy walls, while the pressure drop increases slightly. There are optimal amplitudes that raise the comprehensive performance evaluation criteria to extreme values for given larger wavelengths, while the comprehensive performance evaluation criteria increase monotonously as the amplitude increases for given smaller wavelengths. Conclusion Wavy walls can significantly improve the thermal performance of tree-shaped microchannel disc heat sinks, and the use of constructal design can realize optimal geometric constructs with optimal comprehensive performance evaluation criteria. -
Key words:
- constructal theory /
- electronic device cooling /
- microchannel heat sink /
- wavy walls /
- thermal design
-
表 1 热物性参数
Table 1. Thermal properties
材料 密度ρ/$ ({\rm{kg}} \cdot {\rm{m}}^{ - 3}) $ 比热容cp,s/$({\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{{ - 1}}} \cdot {{\rm{K}}^{{ - 1}}})$ 导热系数k/${({\rm{W}}} \cdot {{\rm{m}}^{{ - 1}}} \cdot {{\rm{K}}^{ - 1}})$ 动力黏度μ/${({\rm{P}}}{\text{a}} \cdot {\text{s)}}$ 硅 2 330.0 712 148 — 去离子水 998.2 4 182 0.6 0.001 003 表 2 网格无关性检验
Table 2. Grid independence verification
网格数量 Tmax/K Tmax误差/% ΔP/Pa ΔP误差/% 553 306 349.920 9 0.180 541.358 4 1.520 814 068 350.553 2 0.135 533.251 4 0.274 1 178 772 351.026 3 0.010 531.794 1 0.576 1 813 403 350.923 6 ― 534.873 4 ― -
[1] 周志杰, 董仁义, 彭光明, 等. 潜艇舱室热管理技术[J]. 中国舰船研究, 2010, 5(1): 56–59. doi: 10.3969/j.issn.1673-3185.2010.01.013ZHOU Z J, DONG R Y, PENG G M, et al. Thermal management of submarine cabins[J]. Chinese Journal of Ship Research, 2010, 5(1): 56–59 (in Chinese). doi: 10.3969/j.issn.1673-3185.2010.01.013 [2] LOHRASBI S, HAMMER R, ESSL W, et al. A comprehensive review on the core thermal management improvement concepts in power electronics[J]. Renewable and Sustainable Energy Reviews, 2020, 8: 166880–166906. [3] van ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211–216. doi: 10.1038/s41586-020-2666-1 [4] 宁献文, 徐侃, 王玉莹, 等. 嫦娥五号轻量化泵驱单相流体回路热总线设计及实现[J]. 航空学报, 2022, 43(12): 164–173.NING X W, XU K, WANG Y Y, et al. Design and implementation of Chang'e-5 complex of lander and ascent vehicle lightweight pumped fluid loop thermal bus[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 164–173 (in Chinese). [5] NAQIUDDIN N H, SAW L H, YEW M C, et al. Overview of micro-channel design for high heat flux application[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 901–914. doi: 10.1016/j.rser.2017.09.110 [6] PENG Y, ZHU X G, CAO B, et al. Heat transfer and permeability of the tree-like branching networks[J]. International Journal of Heat and Mass Transfer, 2019, 129: 801–811. doi: 10.1016/j.ijheatmasstransfer.2018.09.121 [7] CHENG X, WU H Y. Enhanced flow boiling performance in high-aspect-ratio groove-wall microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120468. doi: 10.1016/j.ijheatmasstransfer.2020.120468 [8] LYU Y Z, XIA G D, CHENG L X, et al. Experimental investigation into unstable two phase flow phenomena during flow boiling in multi-microchannels[J]. International Journal of Thermal Sciences, 2021, 166: 106985. doi: 10.1016/j.ijthermalsci.2021.106985 [9] BEJAN A. Constructal-theory network of conducting paths for cooling a heat generating volume[J]. International Journal of Heat and Mass Transfer, 1997, 40(4): 799–811,813-816. doi: 10.1016/0017-9310(96)00175-5 [10] BEJAN A. Street network theory of organization in nature[J]. Journal of Advanced Transportation, 1996, 30(2): 85–107. doi: 10.1002/atr.5670300207 [11] CHEN L G, FENG H J, XIE Z H, et al. Progress of constructal theory in China over the past decade[J]. International Journal of Heat and Mass Transfer, 2019, 130: 393–419. doi: 10.1016/j.ijheatmasstransfer.2018.10.064 [12] LORENTE S, BEJAN A. Current trends in constructal law and evolutionary design[J]. Heat Transfer-Asian Research, 2019, 48(8): 3574–3589. doi: 10.1002/htj.21556 [13] WANG L, XIE Z H, CHEN L G, et al. Equivalent thermal resistance minimization for a circular disc heat sink with reverting microchannels based on constructal theory and entransy theory[J]. Science China Technological Sciences, 2021, 64(1): 111–121. doi: 10.1007/s11431-020-1578-6 [14] CHEN L G, WU W J, FENG H J. Constructal design for heat conduction[M]. London: Book Publisher International, 2021. [15] 陈林根, 孙丰瑞, WU C. 有限时间热力学理论和应用的发展现状[J]. 物理学进展, 1998, 18(4): 395–422. doi: 10.3321/j.issn:1000-0542.1998.04.005CHEN L G, SUN F R, WU C. Finite time thermodynamic theory and applications: state of the arts[J]. Progress in Physics, 1998, 18(4): 395–422 (in Chinese). doi: 10.3321/j.issn:1000-0542.1998.04.005 [16] CHEN L G. Progress in study on constructal theory and its applications[J]. Science China Technological Sciences, 2012, 55(3): 802–820. doi: 10.1007/s11431-011-4701-9 [17] BEJAN A, ALMERBATI A, LORENTE S, et al. Arrays of flow channels with heat transfer embedded in conducting walls[J]. International Journal of Heat and Mass Transfer, 2016, 99: 504–511. doi: 10.1016/j.ijheatmasstransfer.2016.03.123 [18] YOU J, FENG H J, CHEN L G, et al. Constructal design and experimental validation of a non-uniform heat generating body with rectangular cross-section and parallel circular cooling channels[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119028. doi: 10.1016/j.ijheatmasstransfer.2019.119028 [19] SAMAL B, BARIK A K, AWAD M M. Thermo-fluid and entropy generation analysis of newly designed loops for constructal cooling of a square plate[J]. Applied Thermal Engineering, 2019, 156: 250–262. doi: 10.1016/j.applthermaleng.2019.04.048 [20] 王蓉. 高热流密度条件下内肋微通道复合热沉的性能分析与构形设计[D]. 武汉: 海军工程大学, 2020.WANG R. Performance analysis and constructal design of internally finned microchannel composite heat sink with high heat flux[D]. Wuhan: Naval University of Engineering, 2020 (in Chinese). [21] LU Z H, ZHANG K, LIU J X, et al. Effect of branching level on the performance of constructal theory based Y-shaped liquid cooling heat sink[J]. Applied Thermal Engineering, 2020, 168: 114824. doi: 10.1016/j.applthermaleng.2019.114824 [22] HUANG P N, DONG G P, ZHONG X N, et al. Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section[J]. Chemical Engineering and Processing-Process Intensification, 2020, 147: 107769. doi: 10.1016/j.cep.2019.107769 [23] LIU H L, SHI H B, SHEN H, et al. The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: experimental and numerical optimization[J]. Energy, 2019, 189: 116150. doi: 10.1016/j.energy.2019.116150 [24] 谭慧, 宗宽, 熊长武, 等. 叶脉型微通道热沉设计及散热特性分析[J]. 工程设计学报, 2019, 26(4): 477–483. doi: 10.3785/j.issn.1006-754X.2019.04.014TAN H, ZONG K, XIONG C W, et al. Design and heat transfer performance analysis of leaf vein-shaped microchannel heat sink[J]. Chinese Journal of Engineering Design, 2019, 26(4): 477–483 (in Chinese). doi: 10.3785/j.issn.1006-754X.2019.04.014 [25] SONI B, MIGUEL A F, NAYAK A K. A mathematical analysis for constructal design of tree flow networks under unsteady flow[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2020, 476(2240): 20200377. doi: 10.1098/rspa.2020.0377 [26] WECHSATOL W, LORENTE S, BEJAN A. Optimal tree-shaped networks for fluid flow in a disc-shaped body[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 4911–4924. doi: 10.1016/S0017-9310(02)00211-9 [27] 谢志辉, 陈林根, 孙丰瑞. H形对流传热脉管的熵产率最小构形优化[J]. 热科学与技术, 2011, 10(3): 269–277. doi: 10.3969/j.issn.1671-8097.2011.03.014XIE Z H, CHEN L G, SUN F R. Constructal optimization of H-shaped vasculature with convective heat transfer based on minimization of entropy generation rate[J]. Journal of Thermal Science and Technology, 2011, 10(3): 269–277 (in Chinese). doi: 10.3969/j.issn.1671-8097.2011.03.014 [28] SHI H N, XIE Z H, CHEN L G, et al. Constructal optimization for line-to-line vascular based on entropy generation minimization principle[J]. International Journal of Heat and Mass Transfer, 2018, 126: 848–854. doi: 10.1016/j.ijheatmasstransfer.2018.06.009 [29] GONG L, KOTA K, TAO W Q, et al. Parametric numerical study of flow and heat transfer in microchannels with wavy walls[J]. Journal of Heat Transfer, 2011, 133(5): 051702. doi: 10.1115/1.4003284 [30] SUI Y, TEO C J, LEE P S, et al. Fluid flow and heat transfer in wavy microchannels[J]. International Journal of Heat and Mass Transfer, 2010, 53(13/14): 2760–2772. doi: 10.1016/j.ijheatmasstransfer.2010.02.022 [31] SUI Y, LEE P S, TEO C J. An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section[J]. International Journal of Thermal Sciences, 2011, 50(12): 2473–2482. doi: 10.1016/j.ijthermalsci.2011.06.017 [32] ZHU J F, LI X Y, WANG S L, et al. Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs[J]. International Journal of Thermal Sciences, 2019, 146: 106068. doi: 10.1016/j.ijthermalsci.2019.106068 [33] XIE G N, LIU J, LIU Y Q, et al. Comparative study of thermal performance of longitudinal and transversal-wavy microchannel heat sinks for electronic cooling[J]. Journal of Electronic Packaging, 2013, 135(2): 021008. doi: 10.1115/1.4023530 [34] 汤宇轩, 夏国栋, 宗露香, 等. 间断型波纹微通道内沸腾换热特性研究[J]. 工程热物理学报, 2020, 41(12): 3008–3013.TANG Y X, XIA G D, ZONG L X, et al. Investigation of boiling heat transfer characteristics in intermittent wavy microchannels[J]. Journal of Engineering Thermophysics, 2020, 41(12): 3008–3013 (in Chinese). [35] 姚鑫宇, 程潇, 王晗, 等. 铜基正弦波微通道内流动沸腾传热特性试验研究[J]. 化工学报, 2020, 71(4): 1502–1509.YAO X Y, CHENG X, WANG H, et al. Experimental investigation on flow boiling heat transfer in sinusoidal wavy copper microchannels[J]. CIESC Journal, 2020, 71(4): 1502–1509 (in Chinese). [36] FAN J F, DING W K, ZHANG J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 33–44. [37] GUO L, XU H J, GONG L. Influence of wall roughness models on fluid flow and heat transfer in microchannels[J]. Applied Thermal Engineering, 2015, 84: 399–408. doi: 10.1016/j.applthermaleng.2015.04.001 [38] DERAKHSHANPOUR K, KAMALI R, ESLAMI M. Effect of rib shape and fillet radius on thermal-hydrodynamic performance of microchannel heat sinks: a CFD study[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104928. doi: 10.1016/j.icheatmasstransfer.2020.104928 -