留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波纹壁树状微通道圆盘热沉的构形设计

黄景耀 谢志辉 南刚 陆卓群 戈延林

黄景耀, 谢志辉, 南刚, 等. 波纹壁树状微通道圆盘热沉的构形设计[J]. 中国舰船研究, 2023, 18(2): 260–270 doi: 10.19693/j.issn.1673-3185.02446
引用本文: 黄景耀, 谢志辉, 南刚, 等. 波纹壁树状微通道圆盘热沉的构形设计[J]. 中国舰船研究, 2023, 18(2): 260–270 doi: 10.19693/j.issn.1673-3185.02446
HUANG J Y, XIE Z H, NAN G, et al. Constructal design of tree-shaped microchannel disc heat sink with wavy walls[J]. Chinese Journal of Ship Research, 2023, 18(2): 260–270 doi: 10.19693/j.issn.1673-3185.02446
Citation: HUANG J Y, XIE Z H, NAN G, et al. Constructal design of tree-shaped microchannel disc heat sink with wavy walls[J]. Chinese Journal of Ship Research, 2023, 18(2): 260–270 doi: 10.19693/j.issn.1673-3185.02446

波纹壁树状微通道圆盘热沉的构形设计

doi: 10.19693/j.issn.1673-3185.02446
基金项目: 国家自然科学基金资助项目(51979278, 51579244, 51506220)
详细信息
    作者简介:

    黄景耀,男,1993年生,硕士生。研究方向:电子器件热管理与热设计。E-mail:1812751832@qq.com

    谢志辉,男,1977年生,博士,教授,博士生导师。研究方向:先进热管理理论与技术,现代热力学。E-mail:zhihui-xie@163.com

    通信作者:

    谢志辉

  • 中图分类号: U664.5+3

Constructal design of tree-shaped microchannel disc heat sink with wavy walls

知识共享许可协议
波纹壁树状微通道圆盘热沉的构形设计黄景耀,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为了满足船舶与水下航行器等对电子器件高效热管理的需求,开展波纹壁树状微通道圆盘热沉的构形设计研究。  方法  提出波纹壁树状微通道圆盘热沉的设计原型,基于构形理论,在给定热沉体积和液冷微通道体积的约束条件下,以综合考虑传热和流动压降的复合性能指标(PEC)最大化为目标,对波纹壁的振幅和波长进行构形设计。  结果  结果表明:与直通道热沉相比,波纹壁能增大换热表面积,且凹穴处能够产生涡,因而能够有效降低最高温度。当入口雷诺数为700,900或1100,增大波纹壁的振幅时,热沉最高温度降低了13.5 K,但是压降损失明显增大;减小波纹壁的波长,热沉最高温度降低了4.7 K,压降损失增幅较小;在给定波长较大时,均存在最优振幅使复合性能指标取得极大值;在给定波长较小时,随着振幅的增加,复合性能指标单调递增。  结论  波纹壁能够显著提升树状微通道圆盘热沉的传热性能。通过构形设计能够获得复合性能最佳的最优几何结构。
  • 图  波纹壁树状微通道圆盘热沉模型及扇形单元体几何模型

    Figure  1.  Geometric model of tree-shaped microchannel disc heat sink with wavy walls and sector unit body

    图  网格划分

    Figure  2.  Mesh generation

    图  模型有效性验证

    Figure  3.  Verification of model validity

    图  ${A_0}$${T_{\max }}$Re关系的影响

    Figure  4.  Variation of ${T_{\max }}$ with Re at different ${A_0}$

    图  ${A_0}$$N{u_{\rm{ave}}}$Re关系的影响

    Figure  5.  Variation of $N{u_{\rm{ave}}}$ with Re at different ${A_0}$

    图  不同ReA0时热沉下表面的温度分布云图

    Figure  6.  Temperature contours of heat sink bottom surface at different Re and A0

    图  ${A_0}$$\Delta P$Re关系的影响

    Figure  7.  Variation of $\Delta P$ with Re at different ${A_0}$

    图  ${A_0}$${F_{\rm{PEC}}}$Re关系的影响

    Figure  8.  Variation of ${F_{\rm{PEC}}}$ with Re at different ${A_0}$

    图  不同ReA0时竖直方向微通道中间剖面的流线图

    Figure  9.  Streamlines of middle section of vertical direction microchannel at different Re and A0

    图  10  ${T_{\max }}$${A_0}$${\lambda _0}$的三维关系

    Figure  10.  Three-dimensional diagram of ${T_{\max }}$ versus ${A_0}$ and ${\lambda _0}$

    图  11  $N{u_{\rm{ave}}}$${A_0}$${\lambda _0}$的三维关系

    Figure  11.  Three-dimensional diagram of $N{u_{\rm{ave}}}$ versus ${A_0}$ and ${\lambda _0}$

    图  12  不同${A_0}$${\lambda _0} $时热沉下表面的温度分布云图

    Figure  12.  Temperature contours of heat sink bottom surface at different ${A_0}$ and ${\lambda _0} $

    图  13  $\Delta P$${A_0}$${\lambda _0}$的三维关系

    Figure  13.  Three-dimensional diagram of $\Delta P$ versus ${A_0}$ and ${\lambda _0}$

    图  14  ${F_{\rm{PEC}}}$${A_0}$${\lambda _0}$的三维关系

    Figure  14.  Three-dimensional diagram of ${F_{\rm{PEC}}}$ versus ${A_0}$ and ${\lambda _0}$

    图  15  不同${A_0}$${\lambda _0}$情况下竖直方向微通道中间剖面的流线图

    Figure  15.  Streamlines of middle section of vertical direction microchannel at different ${A_0}$ and ${\lambda _0}$

    表  热物性参数

    Table  1.  Thermal properties

    材料密度ρ/$ ({\rm{kg}} \cdot {\rm{m}}^{ - 3}) $比热容cp,s/$({\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{{ - 1}}} \cdot {{\rm{K}}^{{ - 1}}})$导热系数k/${({\rm{W}}} \cdot {{\rm{m}}^{{ - 1}}} \cdot {{\rm{K}}^{ - 1}})$动力黏度μ/${({\rm{P}}}{\text{a}} \cdot {\text{s)}}$
    2 330.0712148
    去离子水998.24 1820.60.001 003
    下载: 导出CSV

    表  网格无关性检验

    Table  2.  Grid independence verification

    网格数量Tmax/KTmax误差/%ΔP/PaΔP误差/%
    553 306349.920 90.180541.358 41.520
    814 068350.553 20.135533.251 40.274
    1 178 772351.026 30.010531.794 10.576
    1 813 403350.923 6534.873 4
    下载: 导出CSV
  • [1] 周志杰, 董仁义, 彭光明, 等. 潜艇舱室热管理技术[J]. 中国舰船研究, 2010, 5(1): 56–59. doi: 10.3969/j.issn.1673-3185.2010.01.013

    ZHOU Z J, DONG R Y, PENG G M, et al. Thermal management of submarine cabins[J]. Chinese Journal of Ship Research, 2010, 5(1): 56–59 (in Chinese). doi: 10.3969/j.issn.1673-3185.2010.01.013
    [2] LOHRASBI S, HAMMER R, ESSL W, et al. A comprehensive review on the core thermal management improvement concepts in power electronics[J]. Renewable and Sustainable Energy Reviews, 2020, 8: 166880–166906.
    [3] van ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211–216. doi: 10.1038/s41586-020-2666-1
    [4] 宁献文, 徐侃, 王玉莹, 等. 嫦娥五号轻量化泵驱单相流体回路热总线设计及实现[J]. 航空学报, 2022, 43(12): 164–173.

    NING X W, XU K, WANG Y Y, et al. Design and implementation of Chang'e-5 complex of lander and ascent vehicle lightweight pumped fluid loop thermal bus[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 164–173 (in Chinese).
    [5] NAQIUDDIN N H, SAW L H, YEW M C, et al. Overview of micro-channel design for high heat flux application[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 901–914. doi: 10.1016/j.rser.2017.09.110
    [6] PENG Y, ZHU X G, CAO B, et al. Heat transfer and permeability of the tree-like branching networks[J]. International Journal of Heat and Mass Transfer, 2019, 129: 801–811. doi: 10.1016/j.ijheatmasstransfer.2018.09.121
    [7] CHENG X, WU H Y. Enhanced flow boiling performance in high-aspect-ratio groove-wall microchannels[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120468. doi: 10.1016/j.ijheatmasstransfer.2020.120468
    [8] LYU Y Z, XIA G D, CHENG L X, et al. Experimental investigation into unstable two phase flow phenomena during flow boiling in multi-microchannels[J]. International Journal of Thermal Sciences, 2021, 166: 106985. doi: 10.1016/j.ijthermalsci.2021.106985
    [9] BEJAN A. Constructal-theory network of conducting paths for cooling a heat generating volume[J]. International Journal of Heat and Mass Transfer, 1997, 40(4): 799–811,813-816. doi: 10.1016/0017-9310(96)00175-5
    [10] BEJAN A. Street network theory of organization in nature[J]. Journal of Advanced Transportation, 1996, 30(2): 85–107. doi: 10.1002/atr.5670300207
    [11] CHEN L G, FENG H J, XIE Z H, et al. Progress of constructal theory in China over the past decade[J]. International Journal of Heat and Mass Transfer, 2019, 130: 393–419. doi: 10.1016/j.ijheatmasstransfer.2018.10.064
    [12] LORENTE S, BEJAN A. Current trends in constructal law and evolutionary design[J]. Heat Transfer-Asian Research, 2019, 48(8): 3574–3589. doi: 10.1002/htj.21556
    [13] WANG L, XIE Z H, CHEN L G, et al. Equivalent thermal resistance minimization for a circular disc heat sink with reverting microchannels based on constructal theory and entransy theory[J]. Science China Technological Sciences, 2021, 64(1): 111–121. doi: 10.1007/s11431-020-1578-6
    [14] CHEN L G, WU W J, FENG H J. Constructal design for heat conduction[M]. London: Book Publisher International, 2021.
    [15] 陈林根, 孙丰瑞, WU C. 有限时间热力学理论和应用的发展现状[J]. 物理学进展, 1998, 18(4): 395–422. doi: 10.3321/j.issn:1000-0542.1998.04.005

    CHEN L G, SUN F R, WU C. Finite time thermodynamic theory and applications: state of the arts[J]. Progress in Physics, 1998, 18(4): 395–422 (in Chinese). doi: 10.3321/j.issn:1000-0542.1998.04.005
    [16] CHEN L G. Progress in study on constructal theory and its applications[J]. Science China Technological Sciences, 2012, 55(3): 802–820. doi: 10.1007/s11431-011-4701-9
    [17] BEJAN A, ALMERBATI A, LORENTE S, et al. Arrays of flow channels with heat transfer embedded in conducting walls[J]. International Journal of Heat and Mass Transfer, 2016, 99: 504–511. doi: 10.1016/j.ijheatmasstransfer.2016.03.123
    [18] YOU J, FENG H J, CHEN L G, et al. Constructal design and experimental validation of a non-uniform heat generating body with rectangular cross-section and parallel circular cooling channels[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119028. doi: 10.1016/j.ijheatmasstransfer.2019.119028
    [19] SAMAL B, BARIK A K, AWAD M M. Thermo-fluid and entropy generation analysis of newly designed loops for constructal cooling of a square plate[J]. Applied Thermal Engineering, 2019, 156: 250–262. doi: 10.1016/j.applthermaleng.2019.04.048
    [20] 王蓉. 高热流密度条件下内肋微通道复合热沉的性能分析与构形设计[D]. 武汉: 海军工程大学, 2020.

    WANG R. Performance analysis and constructal design of internally finned microchannel composite heat sink with high heat flux[D]. Wuhan: Naval University of Engineering, 2020 (in Chinese).
    [21] LU Z H, ZHANG K, LIU J X, et al. Effect of branching level on the performance of constructal theory based Y-shaped liquid cooling heat sink[J]. Applied Thermal Engineering, 2020, 168: 114824. doi: 10.1016/j.applthermaleng.2019.114824
    [22] HUANG P N, DONG G P, ZHONG X N, et al. Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section[J]. Chemical Engineering and Processing-Process Intensification, 2020, 147: 107769. doi: 10.1016/j.cep.2019.107769
    [23] LIU H L, SHI H B, SHEN H, et al. The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: experimental and numerical optimization[J]. Energy, 2019, 189: 116150. doi: 10.1016/j.energy.2019.116150
    [24] 谭慧, 宗宽, 熊长武, 等. 叶脉型微通道热沉设计及散热特性分析[J]. 工程设计学报, 2019, 26(4): 477–483. doi: 10.3785/j.issn.1006-754X.2019.04.014

    TAN H, ZONG K, XIONG C W, et al. Design and heat transfer performance analysis of leaf vein-shaped microchannel heat sink[J]. Chinese Journal of Engineering Design, 2019, 26(4): 477–483 (in Chinese). doi: 10.3785/j.issn.1006-754X.2019.04.014
    [25] SONI B, MIGUEL A F, NAYAK A K. A mathematical analysis for constructal design of tree flow networks under unsteady flow[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2020, 476(2240): 20200377. doi: 10.1098/rspa.2020.0377
    [26] WECHSATOL W, LORENTE S, BEJAN A. Optimal tree-shaped networks for fluid flow in a disc-shaped body[J]. International Journal of Heat and Mass Transfer, 2002, 45(25): 4911–4924. doi: 10.1016/S0017-9310(02)00211-9
    [27] 谢志辉, 陈林根, 孙丰瑞. H形对流传热脉管的熵产率最小构形优化[J]. 热科学与技术, 2011, 10(3): 269–277. doi: 10.3969/j.issn.1671-8097.2011.03.014

    XIE Z H, CHEN L G, SUN F R. Constructal optimization of H-shaped vasculature with convective heat transfer based on minimization of entropy generation rate[J]. Journal of Thermal Science and Technology, 2011, 10(3): 269–277 (in Chinese). doi: 10.3969/j.issn.1671-8097.2011.03.014
    [28] SHI H N, XIE Z H, CHEN L G, et al. Constructal optimization for line-to-line vascular based on entropy generation minimization principle[J]. International Journal of Heat and Mass Transfer, 2018, 126: 848–854. doi: 10.1016/j.ijheatmasstransfer.2018.06.009
    [29] GONG L, KOTA K, TAO W Q, et al. Parametric numerical study of flow and heat transfer in microchannels with wavy walls[J]. Journal of Heat Transfer, 2011, 133(5): 051702. doi: 10.1115/1.4003284
    [30] SUI Y, TEO C J, LEE P S, et al. Fluid flow and heat transfer in wavy microchannels[J]. International Journal of Heat and Mass Transfer, 2010, 53(13/14): 2760–2772. doi: 10.1016/j.ijheatmasstransfer.2010.02.022
    [31] SUI Y, LEE P S, TEO C J. An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section[J]. International Journal of Thermal Sciences, 2011, 50(12): 2473–2482. doi: 10.1016/j.ijthermalsci.2011.06.017
    [32] ZHU J F, LI X Y, WANG S L, et al. Performance comparison of wavy microchannel heat sinks with wavy bottom rib and side rib designs[J]. International Journal of Thermal Sciences, 2019, 146: 106068. doi: 10.1016/j.ijthermalsci.2019.106068
    [33] XIE G N, LIU J, LIU Y Q, et al. Comparative study of thermal performance of longitudinal and transversal-wavy microchannel heat sinks for electronic cooling[J]. Journal of Electronic Packaging, 2013, 135(2): 021008. doi: 10.1115/1.4023530
    [34] 汤宇轩, 夏国栋, 宗露香, 等. 间断型波纹微通道内沸腾换热特性研究[J]. 工程热物理学报, 2020, 41(12): 3008–3013.

    TANG Y X, XIA G D, ZONG L X, et al. Investigation of boiling heat transfer characteristics in intermittent wavy microchannels[J]. Journal of Engineering Thermophysics, 2020, 41(12): 3008–3013 (in Chinese).
    [35] 姚鑫宇, 程潇, 王晗, 等. 铜基正弦波微通道内流动沸腾传热特性试验研究[J]. 化工学报, 2020, 71(4): 1502–1509.

    YAO X Y, CHENG X, WANG H, et al. Experimental investigation on flow boiling heat transfer in sinusoidal wavy copper microchannels[J]. CIESC Journal, 2020, 71(4): 1502–1509 (in Chinese).
    [36] FAN J F, DING W K, ZHANG J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 33–44.
    [37] GUO L, XU H J, GONG L. Influence of wall roughness models on fluid flow and heat transfer in microchannels[J]. Applied Thermal Engineering, 2015, 84: 399–408. doi: 10.1016/j.applthermaleng.2015.04.001
    [38] DERAKHSHANPOUR K, KAMALI R, ESLAMI M. Effect of rib shape and fillet radius on thermal-hydrodynamic performance of microchannel heat sinks: a CFD study[J]. International Communications in Heat and Mass Transfer, 2020, 119: 104928. doi: 10.1016/j.icheatmasstransfer.2020.104928
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  99
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2022-01-24
  • 网络出版日期:  2023-04-12
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回