留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于幂级数法的环肋圆锥壳振动特性分析

伊海铭 王春旭

伊海铭, 王春旭. 基于幂级数法的环肋圆锥壳振动特性分析[J]. 中国舰船研究, 2023, 18(2): 140–148 doi: 10.19693/j.issn.1673-3185.02442
引用本文: 伊海铭, 王春旭. 基于幂级数法的环肋圆锥壳振动特性分析[J]. 中国舰船研究, 2023, 18(2): 140–148 doi: 10.19693/j.issn.1673-3185.02442
YI H M, WANG C X. Vibration characteristics analysis of ring-stiffened conical shells based on power series method[J]. Chinese Journal of Ship Research, 2023, 18(2): 140–148 doi: 10.19693/j.issn.1673-3185.02442
Citation: YI H M, WANG C X. Vibration characteristics analysis of ring-stiffened conical shells based on power series method[J]. Chinese Journal of Ship Research, 2023, 18(2): 140–148 doi: 10.19693/j.issn.1673-3185.02442

基于幂级数法的环肋圆锥壳振动特性分析

doi: 10.19693/j.issn.1673-3185.02442
详细信息
    作者简介:

    伊海铭,男,1997年生,硕士生

    王春旭,男,1981年生,博士,高级工程师

    通信作者:

    王春旭

  • 中图分类号: U661.44

Vibration characteristics analysis of ring-stiffened conical shells based on power series method

知识共享许可协议
基于幂级数法的环肋圆锥壳振动特性分析伊海铭,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在利用解析法求解环肋圆锥壳的振动方程,对环肋圆锥壳的振动特性进行理论研究。  方法  首先,对圆锥壳分段处理,将圆锥壳沿母线方向、环向和法向的位移分别写成幂级数解的形式,并推导出幂级数项前系数的递推关系式; 然后,采用梁模型模拟不同环肋数对圆锥壳振动响应特性的影响;接着,将圆锥壳分段及其环肋边界条件、位移和内力矩阵进行组装求解,得到在外部简谐力激励下圆锥壳的振动响应特性,并将所得结果与ANSYS有限元数值方法的计算结果进行对比,验证所提计算方法的有效性。最后,运用所提理论方法进行环肋圆锥壳的振动特性分析。  结果  结果显示,圆锥壳安装的环肋可明显抑制圆锥壳的振动,具体表现为响应幅值降低、固有频率升高,且在相同频段内共振峰数量减小;增大壳体厚度会引起壳体振动响应幅值降低以及固有频率升高;此外,增大半锥角、轴线长度和环肋数均可降低环肋圆锥壳的振动响应幅值。  结论  研究表明,所用方法对环肋圆锥壳振动的理论研究具有一定意义。
  • 图  环肋圆锥壳示意图

    Figure  1.  Diagram of a ring-stiffened conical shell in this paper

    图  环肋圆锥壳内力和力矩的方向关系图

    Figure  2.  Direction of internal forces and moments in the ring-stiffened conical shell

    图  各阶轴向半波数下环肋圆锥壳振动的固有频率

    Figure  3.  Natural frequencies of the ring-stiffened conical shells under different number of axial half-waves

    图  环肋圆锥壳的幅频响应曲线

    Figure  4.  Amplitude frequency response of the ring-stiffened conical shell

    图  水平激励下环肋圆锥壳的幅频响应曲线

    Figure  5.  Amplitude frequency response of the ring-stiffened conical shell under horizontal excitation

    图  环肋圆锥壳幅频响应的收敛曲线

    Figure  6.  The convergence curve of amplitude frequency response of the ring-stiffened conical shell

    图  不同壳体厚度下环肋圆锥壳的幅频响应曲线

    Figure  7.  Amplitude frequency response of the ring-stiffened conical shell with different thickness of the shell

    图  不同半锥角下环肋圆锥壳的幅频响应曲线

    Figure  8.  Amplitude frequency response of the ring-stiffened conical shell with different angles of semi-cone

    图  不同轴线长度下环肋圆锥壳的幅频响应曲线

    Figure  9.  Amplitude frequency response of the ring-stiffened conical shell with different axis length

    图  10  不同环肋数下环肋圆锥壳的幅频响应曲线

    Figure  10.  Amplitude frequency response of the ring-stiffened conical shell with different number of ribs

    表  计算的环肋圆锥壳固有频率

    Table  1.  Calculated natural frequencies of the ring-stiffened conical shell

    mn不同方法计算的固有频率/Hz偏差/%
    ANSYS本文方法
    1186.76285.833−1.071
    240.60340.7460.352
    344.07944.4330.803
    445.67346.2211.200
    550.99651.6691.320
    658.80059.6801.497
    768.56369.6661.609
    879.95981.4171.823
    21158.515158.8930.238
    286.21186.6410.499
    380.54980.9050.442
    478.44379.5891.461
    580.43281.8551.769
    686.24588.0352.076
    794.79897.0132.337
    8105.443108.2842.694
    31239.216240.7560.644
    2147.631148.4440.551
    3109.510110.6081.003
    4114.428115.6531.071
    5112.015113.5781.395
    6114.995117.0001.744
    7121.639124.0561.987
    8130.908133.8852.274
    下载: 导出CSV
  • [1] 王献忠. 环肋旋转壳声振特性分析的半数值方法[J]. 振动工程学报, 2015, 28(5): 793–799. doi: 10.16385/j.cnki.issn.1004-4523.2015.05.015

    WANG X Z. A semi-numerical method for predicting the vib-acoustic problem of stiffened shells of revolution[J]. Journal of Vibration Engineering, 2015, 28(5): 793–799 (in Chinese). doi: 10.16385/j.cnki.issn.1004-4523.2015.05.015
    [2] TONG L Y. Free vibration of orthotropic conical shells[J]. International Journal of Engineering Science, 1993, 31(5): 719–733. doi: 10.1016/0020-7225(93)90120-J
    [3] CARESTA M, KESSISSOGLOU N J. Vibration of fluid loaded conical shells[J]. The Journal of the Acoustical Society of America, 2008, 124(4): 2068–2077. doi: 10.1121/1.2973237
    [4] CHEN M X, ZHANG C, TAO X F, et al. Structural and acoustic responses of a submerged stiffened conical shell[J]. Shock and Vibration, 2014, 2014: 954253.
    [5] 邓乃旗. 基于解析法的水下环肋圆锥壳声振特性研究[D]. 武汉: 华中科技大学, 2015.

    DENG N Q. An analytical study of the vibration and acoustic radiation of submerged ring-stiffened conical shell[D]. Wuhan: Huazhong University of Science and Technology, 2015 (in Chinese).
    [6] 谢坤. 纵向激励下桨−轴−艇耦合模型声振响应半解析计算方法及特性研究[D]. 武汉: 华中科技大学, 2018.

    XIE K. Study on semi-analytic methods and vibro-acoustic characteristics of coupled propeller-shaft-hull structures subjected to longitudinal excitations[D]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese).
    [7] IRIE T, YAMADA G, KANEKO Y. Free vibration of a conical shell with variable thickness[J]. Journal of Sound and Vibration, 1982, 82(1): 83–94. doi: 10.1016/0022-460X(82)90544-2
    [8] 骆东平, 赵玉喜. 环肋圆锥壳自由振动特性分析[J]. 振动与冲击, 1990, 9(4): 64–69,33. doi: 10.13465/j.cnki.jvs.1990.04.013

    LUO D P, ZHAO Y X. Vibration characteristics analysis of ring-stiffened conical shell[J]. Journal of Vibration and Shock, 1990, 9(4): 64–69,33 (in Chinese). doi: 10.13465/j.cnki.jvs.1990.04.013
    [9] 许瑞阳. 基于改进传递矩阵法的锥、柱壳体的声振特性分析[D]. 武汉: 武汉理工大学, 2017.

    XU R Y. Analysis of vibro- acoustic response of cylindrical and conical shell based on improved transfer matrix method[D]. Wuhan: Wuhan University of Technology, 2017 (in Chinese).
    [10] CRENWELGE Jr O E, MUSTER D. Free vibrations of ring- and-stringer-stiffened conical shells[J]. The Journal of the Acoustical Society of America, 1969, 46(1B): 176–185. doi: 10.1121/1.1911667
    [11] 谭林森, 骆东平. 静水压下加筋圆锥壳振动特性样条分析方法[J]. 华中理工大学学报, 1991, 19(3): 77–82.

    TAN L S, LUO D P. Spline analysis on the vibration characteristics of conical shells with stiffeners under hydrostatic pressure[J]. Journal of Huazhong University of Science and Technology, 1991, 19(3): 77–82 (in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  61
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2021-08-26
  • 网络出版日期:  2023-03-31
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回