Analysis of ultimate load-bearing behavior of stiffened plate under axial cyclic loading
-
摘要:
目的 为提高船体加筋板极限承载性能非线性数值模拟的准确性,研究理想弹塑性、各向同性强化及循环塑性Chaboche材料模型对加筋板极限状态时的塑性屈服分布及压缩、拉伸极限强度的影响。 方法 针对某同一尺寸加筋板,采用ANSYS软件开展轴向循环压缩、循环压缩−拉伸载荷下的极限承载性能非线性有限元数值模拟。 结果 结果显示,不同的材料属性对加筋板极限承载性能及极限状态时的塑性屈服分布具有显著影响;在开展船体加筋板极限承载性能非线性有限元数值模拟时,需要根据不同的载荷形式选择恰当的材料模型。 结论 所得结果对进一步研究船体结构在循环载荷作用下的极限强度特性及累积塑性破坏机理具有一定的参考价值。 Abstract:Objectives In order to improve the accuracy of nonlinear numerical simulation of the ultimate load-bearing behavior of a hull stiffened plate, the effects of ideal elastoplastic, isotropic hardening and cyclic plastic Chaboche material models on the plastic yield distribution, compression and tensile ultimate strength of stiffened plates in their ultimate state are studied. Methods For a stiffened plate of the same size, ANSYS software is used to carried out non-linear finite element numerical simulation of ultimate bearing performance under axial cyclic compression and cyclic compression-tension loads. Results The results show that different material properties have a significant impact on the ultimate bearing capacity of stiffened plates and the plastic yield distribution in the ultimate state. When carrying out nonlinear finite element numerical simulation of the ultimate bearing behavior of a hull stiffened plate, it is necessary to select the appropriate material model according to different load forms. Conclusions The results of this study can provide valuable references for further research on the ultimate strength characteristics and cumulative plastic failure mechanisms of hull structures under cyclic loading. -
Key words:
- cyclic loading /
- stiffened plate /
- cyclic plasticity /
- ultimate strength
-
表 1 加筋板单元模型尺寸
Table 1. Model size of stiffened plates
参 数 数值 板 强横梁间距a/mm 1 000 相邻纵骨间距b/mm 350 厚度t/mm 9 加强筋
(T型材)腹板高度hw /mm 200 腹板厚度tw /mm 6.4 面板宽度bf /mm 140 面板厚度tf /mm 8.8 表 2 加筋板单元边界条件
Table 2. Boundary conditions of stiffened plates
加筋板单元 边界条件 板格长边 Uy = Rx = Rz = 0 板格短边 固定端:Ux = Ry = Rz = 0
加载端:Ry = Rz = 0强横梁 与板相交处:Uz = 0
与加强筋相交处:Uy = 0表 3 不同网格尺寸加筋板单元极限强度数值计算结果
Table 3. Numerical calculation results of ultimate strength of stiffened plates with different grid sizes
网格尺寸(长×宽)/mm 极限强度/MPa 50×50 280.98 25×25 277.67 12.5×12.5 276.56 表 4 载荷模式与材料属性
Table 4. Loading mode and material properties
工况编号 幅值 循环模式 循环次数 材料属性 材料参数 1 $2.5\varepsilon _{\rm{Y}}$ 单次压缩 − 理想弹塑性 E$ =207\;000\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =310.5\;{\rm{MPa}} $,$\varepsilon _{\rm{Y} } = 0.001\;5$ 2 $1.5\varepsilon _{\rm{Y}} - 2.0\varepsilon _{\rm{Y}} - 2.5\varepsilon _{\rm{Y}}$ 循环压缩 3 11 $ 2.5\varepsilon _{\rm{Y}} $ 单次压缩 − 各向同性强化 E$ =207\;000\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =310.5\;{\rm{MPa}} $,G=$10\;000\;{\rm{MPa}}$,$\varepsilon _{\rm{Y}} = 0.001\;5$ 22 $1.5\varepsilon _{\rm{Y}} - 2.0\varepsilon _{\rm{Y}} - 2.5\varepsilon _{\rm{Y}}$ 循环压缩 3 3 $4.0\varepsilon _{\rm{Y}}$ 单次压缩 − 理想弹塑性 E$ =207\;000\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =310.5\;{\rm{MPa}} $,$\varepsilon _{\rm{Y} } = 0.001\;5$ 4 $2.0\varepsilon _{\rm{Y}} - 3.0\varepsilon _{\rm{Y}} - 4.0\varepsilon _{\rm{Y}}$ 循环压缩 3 33 $4.0\varepsilon _{\rm{Y}}$ 单次压缩 − 各向同性强化 E$ =207\;000\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =310.5\;{\rm{MPa}} $,G=$10\;000\;{\rm{MPa}}$,$\varepsilon _{\rm{Y}} = 0.001\;5$ 44 $2.0\varepsilon _{\rm{Y}} - 3.0\varepsilon _{\rm{Y}} - 4.0\varepsilon _{\rm{Y}}$ 循环压缩 3 5 $ \pm 1.5\varepsilon _{\rm{Y}}$ 循环
压缩−拉伸3 理想弹塑性 E$ =205\;800\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =285\;{\rm{MPa}} $,$\varepsilon _{\rm{Y}} = 0.001\;38$ 6 $ \pm 1.8\varepsilon _{\rm{Y}}$ 7 $ \pm 2.0\varepsilon _{\rm{Y}}$ 55 $ \pm 1.5\varepsilon _{\rm{Y}}$ 3 循环塑性 Chaboche模型,$\varepsilon _{\rm{Y}} = 0.001\;38$ 66 $ \pm 1.8\varepsilon _{\rm{Y}}$ 77 $ \pm 2.0\varepsilon _{\rm{Y}}$ 8 $ \pm 1.8\varepsilon _{\rm{Y}}$ 循环
压缩−拉伸10 理想弹塑性 E$ =205\;800\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =285\;{\rm{MPa}} $,$\varepsilon _{\rm{Y}} = 0.001\;38 $ 88 $ \pm 1.8\varepsilon _{\rm{Y}}$ 循环塑性 Chaboche模型,$\varepsilon _{\rm{Y} } = 0.001\;38$ -
[1] CALDWELL J B. Ultimate longitudinal strength[J]. Transactions of RINA, 1965, 107: 411–430. [2] IACS. Common structural rules for double hull oil tankers[S]. London: International Association of Classification Societies, 2006. [3] IACS. Common structural rules for bulk carriers[S]. London: International Association of Classification Societies, 2006. [4] ISO. Ships and marine technology-ship structures-Part 1: general requirements for their limit state assessment: ISO 18072-1[S]. Geneva, Switzerland: ISO, 2007. [5] IMO. Goal-based standards[S]. London, UK: International Maritime Organization, 2010. [6] IMO. Harmonised common structural rules (HCSR) for oil tankers and bulk carriers: MSC 87/5/6[S]. London, UK: International Association of Classification Societies (IACS), 2012. [7] MURRAY J M. Structural development of tankers[J]. European shipbuilding, 1953, 3(5). [8] J. H. 伊万斯. 船舶结构设计概念[M]. 桑国光, 陈穗康, 王兴飞, 等译. 北京: 国防工业出版社, 1985.EVANS J H. Concept of ship structure design[M]. SANG G G, CHEN S K, WANG X F, et al, trans. Beijing: National Defense Industry Press, 1985 (in Chinese). [9] FUJITA Y, NOMOTO T, YUGE K. Behavior of deformation of structural members under compressive and tensile loads (18 report)—On the buckling of a column subjected to repeated loading[J]. Journal of the Society of Naval Architects of Japan, 1984, 156: 346–354. [10] 黄震球. 关于海船船体总强度准则的一个新见解[J]. 武汉造船, 1993(6): 8–12.HUANG Z Q. A new view on the criterion of total hull strength for sea-going ships[J]. Wuhan Shipbuilding, 1993(6): 8–12 (in Chinese). [11] 黄震球, 陈齐树, 骆子夜. 循环弯曲载荷下船体梁的极限纵强度[J]. 中国造船, 1996(3): 87–95.HUANG Z Q, CHEN Q S, LUO Z Y. Ultimate longitudinal strength of ship's hull girder under cyclic bending loads[J]. Shipbuilding of China, 1996(3): 87–95 (in Chinese). [12] 黄震球. 船舶强度研究中的几个问题[J]. 武汉造船, 1999(3): 1–5.HUANG Z Q. Some problems in the study of ship's strength[J]. Wuhan Shipbuilding, 1999(3): 1–5 (in Chinese). [13] CUI H W, YANG P. Ultimate strength assessment of hull girder under cyclic bending based on smith's method[J]. Journal of Ship Research, 2018, 62(2): 77–88. doi: 10.5957/JOSR.170072 [14] CUI H W, YANG P. Ultimate strength of hull plates under monotonic and cyclic uniaxial compression[J]. Journal of Ship Research, 2018, 62(3): 156–165. doi: 10.5957/JOSR.170080 [15] CUI H W, YANG P. Ultimate strength and failure characteristics research on steel box girders under cyclic-bending moments[J]. Journal of Marine Science and Technology, 2018, 23(4): 926–936. doi: 10.1007/s00773-017-0521-3 [16] CUI H W, YANG P. Cyclic behavior of stiffened plates under in-plane loading by numerical analysis[C]//Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, USA: ASME, 2014. [17] CUI H W, YANG P, CUI C. Experimental research on ultimate strength of plates under cyclic axial loads[C]//Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference. Kona, Big Island, Hawaii, USA: ISOPE, 2015. [18] JONES N. On the shakedown limit of a ship's hull girder[J]. Journal of Ship Research, 1975, 19(2): 118–121. doi: 10.5957/jsr.1975.19.2.118 [19] GANNON L G, PEGG N G, SMITH M J, et al. Effect of residual stress shakedown on stiffened plate strength and behaviour[J]. Ships and Offshore Structures, 2013, 8(6): 638–652. doi: 10.1080/17445302.2012.664429 [20] ZHANG X M, PAIK J K, JONES N. A new method for assessing the shakedown limit state associated with the breakage of a ship's hull girder[J]. Ships and Offshore Structures, 2016, 11(1): 92–104. [21] SMITH C S. Influence of local compressive failure on ultimate longitudinal strength of a ship's hull[C]//Proceedings of the International Symposium on PRADS. Tokyo, Japan: [s. n. ], 1977: 73-79. [22] HUGHES O F, PAIK J K. Ship structural analysis and design[M]. [s. l. ]: Society of Naval Architects and Marine Engineers, 2010. [23] LI S, HU Z Q, BENSON S. An analytical method to predict the buckling and collapse behaviour of plates and stiffened panels under cyclic loading[J]. Engineering Structures, 2019, 199: 109627. doi: 10.1016/j.engstruct.2019.109627 [24] LEMAITRE J, CHABOCHE J L. Mechanics of solid materials[M]. Cambridge, UK: Cambridge University Press, 1990. [25] KROLO P, GRANDIĆ D, SMOLČIĆ Ž. Experimental and numerical study of mild steel behaviour under cyclic loading with variable strain ranges[J]. Advances in Materials Science and Engineering, 2016, 2016: 7863010. -
ZG2400_en.pdf
ZG2400_en.pdf
-