Influence of subgrid-scale models on cavitation phenomenon around a 3D twisted hydrofoil
-
摘要:
目的 旨在探究三维扭曲水翼空化数值模拟中网格密度及亚格子模型的适应性问题。 方法 为此,使用大涡模拟(LES)方法和Schnerr-Sauer(S-S)空化模型对Delft Twist11N三维扭曲水翼的非定常空化流场进行数值模拟,重点研究3套不同密度的网格和WMLES,SL,WALE这3种亚格子模型对Delft Twist11N水翼空化演变过程、空化脱落频率及时均升阻力系数等的影响。 结果 结果表明:适当的网格加密形式既能够捕捉到较多的细小空泡脱落、马蹄形云空泡的初生与溃灭等非定常空化演变现象,又能够获得具有较高精度的空泡脱落频率、时均升阻力系数和时均压力分布。相较于WMLES和SL亚格子模型, WALE亚格子模型较好地捕捉到了片空泡及云空泡的演变,在预报空泡脱落频率、时均升阻力系数及压力系数方面精度较优。 结论 因此,推荐采用基于WALE亚格子模型的LES方法进行非定常云状空化的数值模拟。 Abstract:Objective This paper aims to explore the suitability of mesh density and subgrid-scale model for the numerical simulation of three-dimensional twisted hydrofoil. Methods The large eddy simulation (LES) method and Schnerr-Sauer (S-S) cavitation model are used to simulate the unsteady cavitation flow of a Delft Twist11N three-dimensional twisted hydrofoil. Three sets of grid with different density and three types of different subgrid-scale models are mainly studied to identify the effects on the Twist11N hydrofoil cavitation evolution process, cavitation shedding frequency and time-averaged lift and drag coefficients. Results The results show that appropriate grid refinement can not only capture more unsteady cavitation evolution phenomena such as the shedding of smaller cavities and the inception and collapse of horse-shoe-shaped cloud cavities, but also obtain more exact cavity shedding frequency, time-averaged lift and drag coefficients, and time-averaged pressure distribution. Among the three subgrid-scale models, compared to the algebraic wall-modeled LES model (WMLES) and Smagorinsky-Lilly (SL) model, the wall-adapting local eddy-viscosity (WALE) model better captures the evolution of sheet and cloud cavitation, and has better accuracy in predicting the frequency of cavity shedding,time-averaged lift, drag and pressure coefficients. Conclusion It is recommended to adopt the LES method with the WALE subgrid-scale model for the numerical simulation of unsteady cloud cavitation. -
表 1 Twist11N水翼网格划分参数
Table 1. Grid parameters of Twist11N hydrofoil
网络编号 l1 l2 l3 l4 $ y_{\max }^ + $ $ \Delta x + $ G1 25 63 101 90 0.793 112 G2 30 75 120 90 0.789 94 G3 36 89 143 90 0.803 80 表 2 不同网格密度下时均升阻力系数计算结果的对比
Table 2. Numerical results of the time-averaged lift and drag coefficient for various grid schemes
项目 G1 G2 G3 LES[19] $100{\bar C_{\rm{D} } }$ 2.117 2.084 2.116 − $\bar C_{\rm{L}}$ 0.4412 0.4458 0.4503 0.4400 ${\bar C_{\rm{L} } } 误差/\text{%}$ −13.49 −12.59 −11.71 −13.73 表 3 不同亚格子模型时均升阻力系数计算结果的对比
Table 3. Numerical results of the time-averaged lift and drag coefficients for various subgrid-scale models
项目 WALE WMLES SL LES[19] $100 {\bar C_{\rm{D} } }$ 2.084 2.582 2.564 − $\bar C_{\rm{L} }$ 0.4458 0.4156 0.3660 0.4400 ${\bar C_{\rm{L} }} 误差/\text{%}$ −12.59 −18.51 −28.24 −13.73 -
[1] KUBOTA A, KATO H, YAMAGUCHI H, et al. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[J]. Journal of Fluids Engineering, 1989, 111(2): 204–210. doi: 10.1115/1.3243624 [2] KJELDSEN M, ARNDT R E A, EFFERTZ M. Spectral characteristics of sheet/cloud cavitation[J]. Journal of Fluids Engineering, 2000, 122(3): 481–487. doi: 10.1115/1.1287854 [3] FARHAT M, AVELLAN F. On the detachment of a leading edge cavitation[J]. Cerâ mica, 2001, 49(309): 40–43. [4] FOETH E J. The structure of three-dimensional sheet cavitation[D]. The Netherlands: Delft University of Technology, 2008. [5] LI D Q, GREKULA M, LINDELL P. A modified SST k-ω turbulence model to predict the steady and unsteady sheet cavitation on 2D and 3D hydrofoils[C]//The 7th International Symposium on Cavitation. Ann Arbor, MI, USA: CAV Publishing, 2009: 1-13. [6] 刘登成, 洪方文. 三维水翼云空泡非定常特性数值分析及试验验证[J]. 水动力学研究与进展, 2010, 25(6): 721–726.LIU D C; HONG F W. The numerical analysis of unsteady performance of cavitating flow on 3D hydrofoils and comparison with experiments[J]. Chinese Journal of Hydrodynamics, 2010, 25(6): 721–726 (in Chinese). [7] LI Z R. Assessment of cavitation erosion with a multiphase reynolds-averaged navier-stokes method[D]. The Netherlands: Delft University of Technology, 2012. [8] JI B, LUO X W, ARNDT R E A, et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction[J]. Ocean Engineering, 2014, 87: 64–77. doi: 10.1016/j.oceaneng.2014.05.005 [9] 蒲汲君, 熊鹰. 三维水翼梢涡流场数值研究[J]. 中国舰船研究, 2017, 12(1): 8–13,26. doi: 10.3969/j.issn.1673-3185.2017.01.002PU J J, XIONG Y. Numerical study of hydrofoil tip vortex fluid field[J]. Chinese Journal of Ship Research, 2017, 12(1): 8–13,26 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.002 [10] JI B, LUO X W, ARNDT R E A, et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International Journal of Multiphase Flow, 2015, 68: 121–134. doi: 10.1016/j.ijmultiphaseflow.2014.10.008 [11] WU X C, WANG Y W, HUANG C G. Effect of mesh resolution on large eddy simulation of cloud cavitating flow around a three dimensional twisted hydrofoil[J]. European Journal of Mechanics-B/Fluids, 2016, 55: 229–240. doi: 10.1016/j.euromechflu.2015.09.011 [12] LONG X P, CHENG H Y, JI B, et al. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil[J]. International Journal of Multiphase Flow, 2018, 100: 41–56. doi: 10.1016/j.ijmultiphaseflow.2017.12.002 [13] SUN T Z, WANG Z H, ZOU L, et al. Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil[J]. Ocean Engineering, 2020, 197: 106831. doi: 10.1016/j.oceaneng.2019.106831 [14] LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(3): 633–635. doi: 10.1063/1.858280 [15] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200. doi: 10.1023/A:1009995426001 [16] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638–1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001 [17] COUTIER-DELGOSHA O, REBOUD J L, DELANNOY Y. Numerical simulation of the unsteady behaviour of cavitating flows[J]. International Journal for Numerical Methods in Fluids, 2003, 42(5): 527–548. [18] HOEKSTRA M, VAN TERWISGA T, FOETH E J. smp’11 workshop–case 1: delftFoil[C]//2nd International Symposium on Marine Propulsors. Hamburg, Germany: ISMP Publishing, 2011: 1-6. [19] BENSOW R E. Simulation of the unsteady cavitation on the Delft Twist11 foil using RANS, DES and LES[C]//2nd International Symposium on Marine Propulsors. Hamburg, Germany: ISMP Publishing, 2011: 1-10. [20] VAZ G, LLOYD T P, GNANASUNDARAM A K. Improved modelling of sheet cavitation dynamics on Delft Twist11 hydrofoil[C]//VII International Conference on Computational Methods in Marine Engineering. Nantes, France: ICCMME Publishing, 2017. -
ZG2387_en.pdf
-