留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛合金耐压夹层圆柱壳芯层结构拓扑优化

张浩宇 贺章勋 程远胜

张浩宇, 贺章勋, 程远胜. 钛合金耐压夹层圆柱壳芯层结构拓扑优化[J]. 中国舰船研究, 2023, 18(2): 121–126, 159 doi: 10.19693/j.issn.1673-3185.02385
引用本文: 张浩宇, 贺章勋, 程远胜. 钛合金耐压夹层圆柱壳芯层结构拓扑优化[J]. 中国舰船研究, 2023, 18(2): 121–126, 159 doi: 10.19693/j.issn.1673-3185.02385
ZHANG H Y, HE Z X, CHENG Y S. Topology optimization of core structure of titanium alloy sandwich cylindrical shell[J]. Chinese Journal of Ship Research, 2023, 18(2): 121–126, 159 doi: 10.19693/j.issn.1673-3185.02385
Citation: ZHANG H Y, HE Z X, CHENG Y S. Topology optimization of core structure of titanium alloy sandwich cylindrical shell[J]. Chinese Journal of Ship Research, 2023, 18(2): 121–126, 159 doi: 10.19693/j.issn.1673-3185.02385

钛合金耐压夹层圆柱壳芯层结构拓扑优化

doi: 10.19693/j.issn.1673-3185.02385
详细信息
    作者简介:

    张浩宇,男,1996 年生,硕士。研究方向:船舶结构优化设计。E-mail:m201971703@hust.edu.cn

    贺章勋,男,1981 年生,硕士,高级工程师

    程远胜,男,1962 年生,博士,教授,博士生导师。研究方向:船舶海洋结构优化设计。E-mail:yscheng@hust.edu.cn

    通信作者:

    程远胜

  • 中图分类号: U661.43

Topology optimization of core structure of titanium alloy sandwich cylindrical shell

知识共享许可协议
钛合金耐压夹层圆柱壳芯层结构拓扑优化张浩宇,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  因对于钛合金耐压夹层圆柱壳这种新型耐压结构研究得较少,其芯层拓扑形式有待优化确认,需开展芯层拓扑优化。  方法  首先,选择一个壁厚较大的无加筋圆柱壳作为分析对象,采用ANSYS轴对称单元计算结构的应力;然后,沿圆柱壳厚度方向划分为上、中、下3个区域,将中部区域的结构设为设计变量,并建立其芯层结构形式的两阶段拓扑优化数学模型;最后,基于Matlab建立遗传算法主控程序,针对无加筋圆柱壳芯层的布置,分别仅沿轴向、轴向与径向布置形式两个阶段进行拓扑优化,以验证上述耐压夹层圆柱壳加筋形式的合理性。  结果  优化方案芯层拓扑形式为等间距设置,垂直连接内壳和外壳的肋板。  结论  静水压力载荷下的耐压夹层圆柱壳结构是一种合理的耐压结构形式。
  • 图  无加筋圆柱壳设计空间

    Figure  1.  Design space of solid unreinforced cylindrical shell

    图  无加筋圆柱壳拓扑优化设计变量定义示意图

    Figure  2.  Schematics of variable definition for topology optimization design of solid unreinforced cylindrical shell

    图  第1阶段设计变量示意图

    Figure  3.  Design variables in the first stage of topology optimization

    图  第1阶段优化方案的几何模型

    Figure  4.  Geometric model obtained in the first stage of optimization scheme

    图  第2阶段优化方案的设计变量定义示意图

    Figure  5.  Schematic diagram of design variable definition in the second stage of optimization scheme

    图  约束条件示意图

    Figure  6.  Schematic diagram of constraint conditions

    图  第2阶段优化方案的几何模型

    Figure  7.  Geometric model in the second stage of optimization scheme

    图  第2阶段优化方案的特征应力云图

    Figure  8.  Contour plots of characteristic stress obtained in the second stage of optimization scheme

    图  工程化处理后的方案几何模型

    Figure  9.  Geometric model of the scheme after engineering treatment

    图  10  工程化处理后的设计方案应力云图

    Figure  10.  Contour plots of characterisitic stress in design scheme after engineering treatment

    图  11  耐压夹层圆柱壳几何模型

    Figure  11.  Geometric model of pressure resisting sandwich cylindric-al shell

    表  特征应力约束限界值

    Table  1.  Limit values of characteristic stress

    特征应力限界值
    内壳中面周向应力/MPa520
    外壳中面周向应力/MPa472
    内壳内表面纵向应力/MPa572
    外壳内表面纵向应力/MPa674
    肋骨应力/MPa400
    下载: 导出CSV

    表  第1阶段优化方案的设计变量取值

    Table  2.  Selection of design variables in the first stage of optimization scheme

    编号取值编号取值编号取值
    10110210
    21120221
    30130230
    40140240
    50151250
    60160260
    70170270
    80180280
    91190291
    100200300
    下载: 导出CSV

    表  第1阶段优化方案的特征应力取值及其限界值

    Table  3.  Selection of characteristic stresses and their limit values in the first stage of optimization scheme

    特征应力取值限界值约束裕度/%
    内壳中面周向应力/MPa519.65200.07
    外壳中面周向力/MPa469.24720.59
    内壳内表面纵向应力/MPa363.157236.50
    外壳内表面纵向应力/MPa202.067470.00
    肋骨应力/MPa349.840012.60
    下载: 导出CSV

    表  第2阶段优化方案的特征应力阻值及其限界值

    Table  4.  Selection of characteristic stresses and their limit values in the second stage of optimization scheme

    特征应力取值限界值约束裕度/%
    内壳中面周向应力/MPa686.1728.05.76
    外壳中面周向应力/MPa595.5660.89.88
    肋板中部的Mises应力/MPa582.3583.30.17
    肋板与内壳相连处的Mises应力/MPa1 287.21 520.015.30
    肋板与外壳相连处的Mises应力/MPa1 354.61 520.010.90
    下载: 导出CSV
  • [1] 夏贤坤, 谢祚水. 夹层圆柱壳结构的应力与总稳定性分析[J]. 华东船舶工业学院学报(自然科学版), 2004, 18(1): 10–12.

    XIA X K, XIE Z S. Stress and stability analysis of double shell structure[J]. Journal of East China Shipbuilding Institute (Natural Science Edition), 2004, 18(1): 10–12 (in Chinese).
    [2] 高上地, 陈静, 卢骏锋, 等. 内压下矩形耐压舱角隅结构形状和拓扑优化设计[J]. 中国造船, 2017, 58(1): 94–100. doi: 10.3969/j.issn.1000-4882.2017.01.011

    GAO S D, CHEN J, LU J F, et al. Shape and topology optimization design of rectangular tank's corner structure under internal pressure[J]. Shipbuilding of China, 2017, 58(1): 94–100 (in Chinese). doi: 10.3969/j.issn.1000-4882.2017.01.011
    [3] 钦伦洋. 基于拓扑优化的船舶结构轻量化研究[D]. 大连: 大连海事大学, 2016.

    QIN L Y. The lightweight research on ship structure based on topological optimization[D]. Dalian: Dalian Mari-time University, 2016 (in Chinese).
    [4] 王存福, 赵敏, 葛彤. 水下耐压结构拓扑优化设计方法探究[J]. 工程力学, 2015, 32(1): 247–256.

    WANG C F, ZHAO M, GE T. Study on the topology optimi-zation design of underwater pressure structure[J]. Engineer-ing Mechanics, 2015, 32(1): 247–256 (in Chinese).
    [5] LI Z M, YU J X, YU Y, et al. Topology optimization of pressure structures based on regional contour tracking technology[J]. Structural and Multidisciplinary Optimization, 2018, 58(2): 687–700. doi: 10.1007/s00158-018-1923-5
    [6] 戴睿婕, 刘勇, 程远胜, 等. 外置式耐压液舱实肋板拓扑和开孔尺寸优化[J]. 中国舰船研究, 2019, 14(6): 139–146 . doi: 10.19693/j.issn.1673-3185.01460

    DAI R J, LIU Y, CHENG Y S, et al. Topology and opening size optimization design of solid floors in an outer tank of the pressure hull[J]. Chinese Journal of Ship Research, 2019, 14(6): 139–146 (in Chinese). doi: 10.19693/j.issn.1673-3185.01460
    [7] 宋晓飞, 肖伟, 何其健, 等. 加筋圆柱壳开孔围栏肘板拓扑优化设计[J]. 中国舰船研究, 2018, 13(1): 46–52. doi: 10.3969/j.issn.1673-3185.2018.01.007

    SONG X F, XIAO W, HE Q J, et al. Topological optimization of opening fence brackets on ring-stiffened cylindrical shell[J]. Chinese Journal of Ship Research, 2018, 13(1): 46–52 (in Chinese). doi: 10.3969/j.issn.1673-3185.2018.01.007
    [8] JIANG C T, CHENG Y S, XIAO W, et al. Shape opti-mization design of brackets connecting girders of an internal bulkhead and pressure hull under external pressure[C]//Proceedings of the ASME 36th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim, Norway: ASME, 2017.
    [9] 高原, 黄进浩, 王永军, 等. 基于拓扑优化和尺寸优化的水下耐压球壳轻量化设计[J]. 舰船科学技术, 2019, 41(11): 54–58. doi: 10.3404/j.issn.1672-7649.2019.11.011

    GAO Y, HUANG J H, WANG Y J, et al. Lightweight study of spherical shell based on topology and size optimi-zation[J]. Ship Science and Technology, 2019, 41(11): 54–58 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.11.011
    [10] 程远胜, 刘甜甜, 刘均. 船舶肘板拓扑优化设计[J]. 中国舰船研究, 2015, 10(5): 53–58,70. doi: 10.3969/j.issn.1673-3185.2015.05.009

    CHENG Y S, LIU T T, LIU J. Topology optimization of ship bracket structures[J]. Chinese Journal of Ship Research, 2015, 10(5): 53–58,70 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.05.009
    [11] 王月, 沈志华, 肖伟, 等. 水下结构物长基座拓扑与尺寸优化设计[J]. 中国舰船研究, 2019, 14(6): 147–154. doi: 10.19693/j.issn.1673-3185.01461

    WANG Y, SHEN Z H, XIAO W, et al. Topology and size optimization design of a long underwater foundation[J]. Chinese Journal of Ship Research, 2019, 14(6): 147–154 (in Chinese). doi: 10.19693/j.issn.1673-3185.01461
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  533
  • HTML全文浏览量:  134
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 修回日期:  2021-11-04
  • 网络出版日期:  2023-04-24
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回