留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舰船抗爆抗冲击技术体系探析

周心桃 吴国民 李德聪

周心桃, 吴国民, 李德聪. 舰船抗爆抗冲击技术体系探析[J]. 中国舰船研究, 2023, 18(2): 127–139 doi: 10.19693/j.issn.1673-3185.02362
引用本文: 周心桃, 吴国民, 李德聪. 舰船抗爆抗冲击技术体系探析[J]. 中国舰船研究, 2023, 18(2): 127–139 doi: 10.19693/j.issn.1673-3185.02362
ZHOU X T, WU G M, LI D C. Analysis of naval warship blast and shock resistance technology system[J]. Chinese Journal of Ship Research, 2023, 18(2): 127–139 doi: 10.19693/j.issn.1673-3185.02362
Citation: ZHOU X T, WU G M, LI D C. Analysis of naval warship blast and shock resistance technology system[J]. Chinese Journal of Ship Research, 2023, 18(2): 127–139 doi: 10.19693/j.issn.1673-3185.02362

舰船抗爆抗冲击技术体系探析

doi: 10.19693/j.issn.1673-3185.02362
详细信息
    作者简介:

    周心桃,女,1969年生,硕士,研究员

    通信作者:

    周心桃

  • 中图分类号: U674.7

Analysis of naval warship blast and shock resistance technology system

知识共享许可协议
舰船抗爆抗冲击技术体系探析周心桃,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 舰船抗爆和抗冲击技术概念宏观,内涵广泛,对其认识理解、设计研究都需要技术体系的顶层划分和牵引。首先,基于武器攻击对舰船的爆炸毁伤类型,对舰船抗爆与抗冲击这两个概念进行划分;然后,基于舰船总体抗爆抗冲击设计技术需求,区分不同的研究对象及技术的基础理论,提出包含6大类型的舰船抗爆抗冲击技术体系的划分方案,即水上/水下防护结构设计、新型抗爆结构与毁伤分析、设备系统及人员抗冲击、舰船抗爆抗冲击试验验证及技术标准规范;最后,分别对舰船抗爆和抗冲击技术内涵进行详细阐述。所做研究可为我国舰船抗爆抗冲击技术体系的形成提供一个初步构想,供从事舰船抗爆抗冲击设计、研究及管理人员参考。
  • 图  早期航母防雷舱设计示意图[4]

    Figure  1.  Cabin design schemes of early aircraft carrier for protection against torpedo attack[4]

    图  非传统结构形式的新型抗爆结构

    Figure  2.  Innovative designs of non-traditional anti-blast structure

    图  水下爆炸载荷[17]

    1−冲击波;2−气泡破裂;3−滞后流;4−海底反射;5−水面截断;6−水面空泡;7−气泡脉动

    Figure  3.  Loads of underwater explosion[17]

    图  舰船抗爆抗冲击技术体系图

    Figure  4.  The framework of anti-blast and anti-shock technology system for naval warships

  • [1] 邵开文, 马运义. 舰船技术与设计概论[M]. 北京: 国防工业出版社, 2005.

    SHAO K W, MA Y Y. Concepts of warship technolo-gy and design[M]. Beijing: National Defense Industry Press, 2005 (in Chinese).
    [2] 刘建湖, 周心桃, 潘建强, 等. 舰艇抗爆抗冲击技术现状和发展途径[J]. 中国舰船研究, 2016, 11(1): 46–56,71. doi: 10.3969/j.issn.1673-3185.2016.01.007

    LIU J H, ZHOU X T, PAN J Q, et al. The state analysis and technical development routes for the anti-explosion and shock technology of naval ships[J]. Chinese Journal of Ship Research, 2016, 11(1): 46–56,71 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.01.007
    [3] 于文满, 何顺禄, 关世义. 舰艇毁伤图鉴[M]. 北京: 国防工业出版社, 1991

    YU W M, HE S L, GUAN S Y. Illustrated handbook of warship damage[M]. Beijing: National Defense Industry Press, 1991 (in Chinese).
    [4] 朱锡, 冯文山, 宋文翰. 航母的装甲防护系统[J]. 现代舰船, 1991(1): 31–36.

    ZHU X, FENG W S, SONG W H. Armour protection system of the aircrafts carrier[J]. Modern Ships, 1991(1): 31–36 (in Chinese).
    [5] 王正国, 熊治国. 决定舰船生命力的因素[J]. 国外舰船工程, 2005(12): 1–6.

    WANG Z G, XIONG Z G. The factors determining warship survivability[J]. International Ship Engineering, 2005(12): 1–6 (in Chinese).
    [6] 王海. 新型夹芯板双层舱壁在侵彻载荷作用下的结构动响应研究[D]. 镇江: 江苏科技大学, 2016.

    WANG H. Research on dynamic response of new sandwich double bulkhead under penetration load[D]. Zhenjiang: Jiangsu University of Science and Technology, 2016 (in Chinese).
    [7] BEACH J E, BRUCHMAN D D, SIKORA J P. Advanced double hull concept reduces costs, increases capabilities[J]. AMPTIAC Quarterly, 2003, 7(3): 5–11.
    [8] 隋先辉, 董受全, 王少平, 等. 新一代的反舰导弹及其应用技术[J]. 战术导弹控制技术, 2010, 27(1): 36–39.

    SUI X H, DONG S Q, WANG S P, et al. A new generation of anti-ship missiles and its application technology[J]. Control Technology of Tactical Missile, 2010, 27(1): 36–39 (in Chinese).
    [9] 郭超, 宫小泽, 李向东. 弹体破片分布及破碎性系数计算[J]. 弹箭与制导学报, 2017, 37(3): 39–42.

    GUO C, GONG X Z, LI X D. Calculation of fragmentation distribution and fragmentation coefficient of projectile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 37(3): 39–42 (in Chinese).
    [10] 张鹏, 任杰, 王绪财, 等. 高强度钢壳体战斗部爆炸破碎无网格法数值仿真[J]. 兵器材料科学与工程, 2016, 39(4): 47–52.

    ZHANG P, REN J, WANG X C, et al. Numerical simulation on fragmentation of high strength steel warhead shell driven by explosion based on grid-free method[J]. Ordnance Material Science and Engineering, 2016, 39(4): 47–52 (in Chinese).
    [11] 孔祥韶, 吴卫国, 杜志鹏, 等. 圆柱形战斗部爆炸破片特性研究[J]. 工程力学, 2014, 31(1): 243–249.

    KONG X S, WU W G, DU Z P, et al. Research on fragments characteristic of cylindrical warhead[J]. Engineering Mechanics, 2014, 31(1): 243–249 (in Chinese).
    [12] 朱锡, 侯海量, 吕岩松, 等. 舰艇结构[M]. 北京: 国防工业出版社, 2014.

    ZHU X, HOU H L, LV Y S, et al. Structure of navy ships[M]. Beijing: National Defense Industry Press, 2014 (in Chinese).
    [13] 李典, 侯海量, 朱锡, 等. 舰船装甲防护结构抗弹道冲击的研究进展[J]. 中国造船, 2018, 59(1): 237–250.

    LI D, HOU H L, ZHU X, et al. Review on ballistic impact resistance of ship armor protection structure[J]. Shipbuilding of China, 2018, 59(1): 237–250 (in Chinese).
    [14] 吴庭翱, 张弩, 侯海量, 等. 水下接触爆炸下多舱防护结构载荷特性及动响应研究进展[J]. 中国舰船研究, 2018, 13(3): 1–12. doi: 10.19693/j.issn.1673-3185.01051

    WU T A, ZHANG N, HOU H L, et al. Research progress on load characteristics and dynamic response of multicamerate defense structure subjected to contact underwater explosion[J]. Chinese Journal of Ship Research, 2018, 13(3): 1–12 (in Chinese). doi: 10.19693/j.issn.1673-3185.01051
    [15] 朱锡, 刘燕红, 黄祥兵. 水面舰艇结构抗水下爆炸毁伤能力表征方法研究[J]. 海军工程大学学报, 2008, 20(2): 27–32.

    ZHU X, LIU Y H, HUANG X B. Method research of charactering vitality of surface warship subjected to underwater explosion[J]. Journal of Naval University of Engineering, 2008, 20(2): 27–32 (in Chinese).
    [16] Civilian-Military Joint Investigation Group. Joint investigation report: on the attack against ROK ship Cheonan[M]. Seoul: Ministry of National Defense, Republic of Korea, 2010.
    [17] 张振华. 舰艇结构水下抗爆能力研究[D]. 武汉: 海军工程大学, 2004.

    ZHANG Z H. Study on explode-resistant of naval vessels subjected to underwater explosion[D]. Wuhan: Naval University of Engineering, 2004 (in Chinese).
    [18] 库尔. 水下爆炸[M]. 罗耀杰, 译. 北京: 国防工业出版社, 1960.

    COLE P. Underwater explosion[M]. LUO Y J, trans. Beijing: National Defense Industry Press, 1960 (in Chinese).
    [19] 姚熊亮. 舰船结构振动冲击与噪声[M]. 北京: 国防工业出版社, 2007.

    YAO X L. Vibration, shock and noise of ship structure[M]. Beijing: National Defense Industry Press, 2007 (in Chinese).
    [20] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble[J]. The Journ-al of the Acoustical Society of America, 2002, 111(4): 1584–1601. doi: 10.1121/1.1458590
    [21] KLASEBOER E, HUNG K C, WANG C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of Fluid Mechanics, 2005, 537: 387–413. doi: 10.1017/S0022112005005306
    [22] KLASEBOER E, KHOO B C, HUNG K C. Dynamics of an oscillating bubble near a floating structure[J]. Journal of Fluids and Structures, 2005, 21(4): 395–412. doi: 10.1016/j.jfluidstructs.2005.08.006
    [23] 姚熊亮, 屈子悦, 姜子飞, 等. 舰船舱内爆炸载荷特征与板架毁伤规律分析[J]. 中国舰船研究, 2018, 13(3): 140–148. doi: 10.19693/j.issn.1673-3185.01162

    YAO X L, QU Z Y, JIANG Z F, et al. Analysis on characteristics of blast loading and stiffened plate damage due to internal blast in ship[J]. Chinese Journal of Ship Research, 2018, 13(3): 140–148 (in Chinese). doi: 10.19693/j.issn.1673-3185.01162
    [24] 张弩, 刘均, 李凯, 等. 舱内爆炸载荷下箱型梁船体节点结构强度分析[J]. 中国舰船研究, 2018, 13(3): 39–45. doi: 10.19693/j.issn.1673-3185.01134

    ZHANG N, LIU J, LI K, et al. Strength analysis of box girder joint structures with frames subjected to internal blast loading[J]. Chinese Journal of Ship Research, 2018, 13(3): 39–45 (in Chinese). doi: 10.19693/j.issn.1673-3185.01134
    [25] 钱安其, 嵇春艳, 王自力. 水下爆炸荷载作用下水面舰船设备冲击环境预报方法研究[J]. 舰船科学技术, 2006, 28(4): 43–47.

    QIAN A Q, JI C Y, WANG Z L. Prediction method of shock environment for equipments on water ship under water explosion[J]. Ship Science and Technology, 2006, 28(4): 43–47 (in Chinese).
    [26] 许军, 刘见华. 舰艇总体抗冲击设计分析[J]. 船舶, 2013, 24(6): 23–26.

    XU J, LIU J H. Design and analysis of overall shock resistance for warships[J]. Ship & Boat, 2013, 24(6): 23–26 (in Chinese).
    [27] HAMMOND L, SAUNDERS D. The applicability of scaling laws to underwater shock tests[M]. Fishermans Bend: DSTO Aeronautical and Maritime Research Labora-tory, 1997.
    [28] ZHANG X C. Scaling law for experiment of underwater explosion with several independent geometrical scales[J]. Journal of Ship Mechanics, 2008, 12(3): 490–499.
    [29] 张效慈. 水下爆炸试验模型律的若干问题[J]. 船舶力学, 2009, 13(5): 783–787.

    ZHANG X C. Some problems for model law of underwater explosion tests[J]. Journal of Ship Mechanics, 2009, 13(5): 783–787 (in Chinese).
    [30] 张磊, 杜志鹏, 吴静波, 等. 200 t级浮动冲击平台水下爆炸试验低频冲击响应数据分析[J]. 中国舰船研究, 2018, 13(3): 60–65. doi: 10.19693/j.issn.1673-3185.01149

    ZHANG L, DU Z P, WU J B, et al. Low-frequency shock response data analysis of underwater explosion test of 200-ton class floating shock platform[J]. Chinese Journal of Ship Research, 2018, 13(3): 60–65 (in Chinese). doi: 10.19693/j.issn.1673-3185.01149
    [31] 董忠臣, 宁永成. 舰艇抗冲击试验爆源引爆方法研究[M]//汪玉. 实船水下爆炸冲击试验及防护技术. 北京: 国防工业出版社, 2010.

    DONG Z C, NING Y C. Research on detonation method of naval ships shock test[M]//WANG Y. Technology of Ships Shock Test and Protection Against Underwater Explosion. Beijing: National Defense Industry Press, 2010 (in Chinese).
  • 加载中
图(4)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  80
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-08-20
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-04-28

目录

    /

    返回文章
    返回