[1] |
丁康, 黄志东, 林慧斌. 一种谱峭度和Morlet小波的滚动轴承微弱故障诊断方法[J]. 振动工程学报, 2014, 27(1): 128–135. doi: 10.3969/j.issn.1004-4523.2014.01.018DING K, HUANG Z D, LIN H B. A weak fault diagnosis method for rolling element bearings based on Morlet wavelet and spectral kurtosis[J]. Journal of Vibration Engineering, 2014, 27(1): 128–135 (in Chinese). doi: 10.3969/j.issn.1004-4523.2014.01.018
|
[2] |
ZHANG C L, LI B, CHEN B Q, et al. Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 162–187. doi: 10.1016/j.ymssp.2015.03.030
|
[3] |
李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19): 124–131.LI H, ZHANG Q, QIN X R, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19): 124–131 (in Chinese).
|
[4] |
程发斌, 汤宝平, 刘文艺. 一种抑制维格纳分布交叉项的方法及在故障诊断中应用[J]. 中国机械工程, 2008, 19(14): 1727–1731.CHENG F B, TANG B P, LIU W Y. A method to suppress cross-terms of wigner-ville distribution and its application in fault diagnosis[J]. China Mechanical Engineering, 2008, 19(14): 1727–1731 (in Chinese).
|
[5] |
何洋洋, 王馨怡, 董晶. 基于经验小波变换与谱峭度的船舶轴系故障特征提取方法[J]. 中国舰船研究, 2020, 15(增刊 1): 98-106.HE Y Y, WANG X Y, DONG J. Fault feature extraction method for marine shafting based on empirical wavelet transform-spectral kurtosis[J]. Chinese Journal of Ship Research, 2020, 15(Supp 1): 98-106 (in Chinese).
|
[6] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
|
[7] |
WANG Y X, MARKERT R, XIANG J W, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems and Signal Processing, 2015, 60/61: 243–251. doi: 10.1016/j.ymssp.2015.02.020
|
[8] |
江志农, 魏东海, 张进杰, 等. 基于VMD和SVD的柴油机气门间隙异常特征提取研究[J]. 振动与冲击, 2020, 39(16): 23–30.JIANG Z N, WEI D H, ZHANG J J, et al. A study on valve clearance anomaly feature extraction of diesel engines based on VMD and SVD[J]. Journal of Vibration and Shock, 2020, 39(16): 23–30 (in Chinese).
|
[9] |
RILLING G, FLANDRIN P. On the influence of sampling on the empirical mode decomposition[C]//2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. Toulouse, France: IEEE, 2006.
|
[10] |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. doi: 10.1142/S1793536909000047
|
[11] |
SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of The Royal Society Interface, 2005, 2(5): 443–454. doi: 10.1098/rsif.2005.0058
|
[12] |
程军圣, 郑近德, 杨宇. 一种新的非平稳信号分析方法——局部特征尺度分解法[J]. 振动工程学报, 2012, 25(2): 215–220. doi: 10.3969/j.issn.1004-4523.2012.02.017CHENG J S, ZHENG J D, YANG Y. A nonstationary signal analysis approach—the local characteristic-scale decomposition method[J]. Journal of Vibration Engineering, 2012, 25(2): 215–220 (in Chinese). doi: 10.3969/j.issn.1004-4523.2012.02.017
|
[13] |
王振亚, 姚立纲, 戚晓利, 等. 参数优化变分模态分解与多域流形学习的行星齿轮箱故障诊断[J]. 振动与冲击, 2021, 40(1): 110–118, 126.WANG Z Y, YAO L G, QI X L, et al. Fault diagnosis of planetary gearbox based on parameter optimized VMD and multi-domain manifold learning[J]. Journal of Vibration and Shock, 2021, 40(1): 110–118, 126 (in Chinese).
|
[14] |
SINGH P, JOSHI S D, PATNEY R K, et al. The Fourier decomposition method for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 2017, 473(2199): 20160871.
|
[15] |
郑近德, 潘海洋, 程军圣, 等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56(9): 125–136. doi: 10.3901/JME.2020.09.125ZHENG J D, PAN H Y, CHENG J S, et al. Adaptive empirical Fourier decomposition based mechanical fault diagnosis method[J]. Journal of Mechanical Engineering, 2020, 56(9): 125–136 (in Chinese). doi: 10.3901/JME.2020.09.125
|
[16] |
彭畅. 旋转机械轴承振动信号分析方法研究[D]. 重庆: 重庆大学, 2014.PENG C. Vibration signal analysis of bearings in the rotating machinery[D]. Chongqing: Chongqing University, 2014 (in Chinese).
|
[17] |
LIU T, CHEN J, DONG G M, et al. The fault detection and diagnosis in rolling element bearings using frequency band entropy[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227(1): 87–99. doi: 10.1177/0954406212441886
|
[18] |
ANTONI J. Cyclic spectral analysis of rolling-element bearing signals: facts and fictions[J]. Journal of Sound and Vibration, 2007, 304(3/4/5): 497–529.
|