Numerical analysis of influence of stern flaps on motion and stability of high-speed amphibious platform
-
摘要:
目的 压浪板对两栖平台的水上性能具有显著影响,需探讨滑行状态下压浪板对高速两栖平台航行姿态及运动稳定性的影响规律。 方法 采用SST k-ω湍流模型以及重叠网格技术,对高速状态下两栖平台的静水直航进行CFD数值仿真计算,比较不同压浪板作用下平台姿态及稳定性的变化特性,并利用支持向量机(SVM)进行速度、重心位置等因素影响下平台运动稳定性边界的分类识别。 结果 结果显示,压浪板通过改变平台底面的压力分布,可减小航行纵倾角,并且压浪板的下旋角度越大,对姿态稳定性的影响越显著;在重心位置相同的情况下,可提高平台稳定状态下能够达到的最大航速。 结论 研究表明减摇附体的应用及运动稳定性的提高对两栖平台的高速化发展意义重大。 Abstract:Objectives Stern flaps have a significant impact on the water performance of high-speed amphibious platforms. This paper discusses the influence of stern flaps on the motion and hydrodynamic characteristics of a high-speed amphibious platform in a sliding state. Method Using the SST k-ω turbulence model and overset grid technology, the CFD numerical simulations of an amphibious platform's high-speed navigation under static water conditions are performed, and the motion response and stability of the platform with different stern flaps are analyzed. Considering the influence of the velocity, center of gravity and angle of the stern flaps on the longitudinal motion of the platform, supporting vector machines are adopted to classify and recognize the boundary of its motion stability. Results The results show that the stern flaps reduce the sailing trim angle by changing the pressure distribution on the underside of the platform, and the larger the rotation angle of the stern flaps, the more significant the influence on motion stability; when the position of the center of gravity is the same, the maximum speed of the platform in a stable state is increased. Conclusion The application of stern flaps and the improvement of motion stability are of great significance for the development of high-speed amphibious platforms. -
表 1 GPPH滑行艇结构参数
Table 1. Parameters of GPPH planing craft
参数 数值 艇长Ll /m 2.410 艇宽Bl /m 0.630 质量ml /kg 101.250 重心距船艉距离xl /m 0.844 重心距基线高度zl /m 0.138 纵向转动惯量Iyy /(kg·m2) 20.940 静浮吃水Dl /m 0.148 表 2 两栖平台参数
Table 2. Parameters of amphibious platform
参数 数值 总长L/m 6.00 水线长LWL/m 5.69 型宽B/m 2.36 吃水D/m 0.42 排水量Δ/t 3.20 重心距底板高度zg /m 0.30 压浪板长度/m 0.15 压浪板宽度/m 0.34 表 3 网格敏感性结果
Table 3. Results of grid sensitivity
表面网格尺寸/mm α=8° α=23° 纵倾角/(°) 升沉/m 纵倾角/(°) 升沉/m 14 4.36 0.318 1.66 0.254 20 4.23 0.316 1.55 0.256 28 3.89 0.319 1.54 0.256 表 4 22 kn速度下的纵向运动结果
Table 4. The results of longitudinal motion at a speed of 22 kn
α/(°) 纵倾角/(°) 升沉/m 无压浪板 4.61 0.34 2 4.50 0.33 8 4.23 0.31 15 2.95 0.28 23 1.55 0.26 -
[1] 居乃鵕. 两栖车辆水动力学分析与仿真[M]. 北京: 兵器工业出版社, 2005: 386-421.JU N J. Hydrodynamics analysis and simulation for amphibious vehicle[M]. Beijing: The Publishing House of Ordnance Industry, 2005: 386-421 (in Chinese). [2] 余祖耀, 廖远才, 李锦云, 等. 滑板角度组合对两栖车辆升阻比影响的仿真研究[J]. 船舶工程, 2015, 37(3): 26–29.YU Z Y, LIAO Y C, LI J Y, et al. Simulation analysis of effect of different skateboard angles on lift-drag ratio of amphibious vehicle[J]. Ship Engineering, 2015, 37(3): 26–29 (in Chinese). [3] MAIMUN A, NAKISA M, TARMIZI A, et al. Numerical study on hydrodynamic resistance of new hull design for multipurpose amphibious vehicle[J]. Applied Mechanics and Materials, 2014, 663: 522–531. doi: 10.4028/www.scientific.net/AMM.663.522 [4] NAKISA M, MAIMUN A, AHMED Y M, et al. Numerical estimation of shallow water effect on multipurpose amphibious vehicle resistance[J]. Journal of Naval Architecture and Marine Engineering, 2017, 14(1): 1–8. doi: 10.3329/jname.v14i1.26523 [5] 凌宏杰, 王志东. 高速滑行艇“海豚运动”现象的实时数值预报方法[J]. 上海交通大学学报, 2014, 48(1): 106–110.LING H J, WANG Z D. Real-time numerical prediction method of “Dolphin Motion” high-speed planning craft[J]. Journal of Shanghai Jiaotong University, 2014, 48(1): 106–110 (in Chinese). [6] MANSOORI M, FERNANDES A C. The interceptor hydrodynamic analysis for controlling the porpoising instability in high speed crafts[J]. Applied Ocean Research, 2016, 57: 40–51. doi: 10.1016/j.apor.2016.02.006 [7] SAKAKI A, GHASSEMI H, KEYVANI S. Evaluation of the hydrodynamic performance of planing boat with trim tab and interceptor and its optimization using genetic algorithm[J]. Journal of Marine Science and Application, 2019, 18(2): 131–141. doi: 10.1007/s11804-018-0040-6 [8] 李冬琴, 李鹏, 章易立, 等. 分段式尾压浪板对高速船阻力性能的影响[J]. 船舶工程, 2019, 41(7): 37–43.LI D Q, LI P, ZHANG Y L, et al. Influence of segmented stern flap on resistance performance of high speed craft[J]. Ship Engineering, 2019, 41(7): 37–43 (in Chinese). [9] 孙一方, 宗智, 姜宜辰. 船舶在波浪上纵向运动与控制研究综述[J]. 中国舰船研究, 2020, 15(1): 1–12, 47.SUN Y F, ZONG Z, JIANG Y C. Review of longitudinal motion and controls of ships on waves[J]. Chinese Journal of Ship Research, 2020, 15(1): 1–12, 47 (in Chinese). [10] LEE S J, LEE T I, LEE J J, et al. Hydrodynamic characteristics of a hydrofoil-assisted amphibious vehicle[J]. Journal of Ship Research, 2017, 61: 15–22. doi: 10.5957/jsr.2017.61.1.15 [11] 王少新, 金国庆, 王涵, 等. 双车厢两栖车静水直航下的水动力性能研究[J]. 兵工学报, 2020, 41(3): 434–441. doi: 10.3969/j.issn.1000-1093.2020.03.003WANG S X, JIN G Q, WANG H, et al. Research on the hydrodynamic performance of a double-carriage amphibious vehicle sailing in still water[J]. Acta Armamentarii, 2020, 41(3): 434–441 (in Chinese). doi: 10.3969/j.issn.1000-1093.2020.03.003 [12] 贾敬蓓, 宗智, 金国庆, 等. 航行姿态对半滑行三体船型静水阻力影响的数值研究[J]. 中国舰船研究, 2020, 15(6): 106–114.JIA J B, ZONG Z, JIN G Q, et al. A numerical investigation of sinkage and trim effects on the resistance of trimaran hull form in calm water[J]. Chinese Journal of Ship Research, 2020, 15(6): 106–114 (in Chinese). [13] JAVANMARD E, YARI E, MEHR J A, et al. Hydrodynamic characteristic curves and behavior of flow around a surface-piercing propeller using computational fluid dynamics based on FVM[J]. Ocean Engineering, 2019, 192: 106445. doi: 10.1016/j.oceaneng.2019.106445 [14] VASHAHI F, DAFSARI R A, REZAEI S, et al. Assessment of steady VOF RANS turbulence models in rendering the internal flow structure of pressure swirl nozzles[J]. Fluid Dynamics Research, 2019, 51(4): 045506. doi: 10.1088/1873-7005/ab2546 [15] LEE E, WEIL C R, FULLERTON A. Experimental results for the calm water resistance of the generic prismatic planing hull (GPPH) : NSWCCD-80-TR-2017/015[R]. Naval Surface Warfare Center Carderock Division, 2017. [16] LI J H, BONFIGLIO L, BRIZZOLARA S. Verification and validation study of openfoam on the generic prismatic planing hull form[C]//MARINE VIII: Proceedings of the VIII International Conference on Computational Methods in Marine Engineering. CIMNE, 2019: 428-440. [17] WEI H X, CHEN J F, ZHU J, et al. A new zoning method of blasting vibration based on energy proportion and its SVM classification models[J]. Shock and Vibration, 2021, 2021: 6697682. -
ZG2331_en.pdf
-